
Towards City-Scale Neural
Rendering
Haithem Turki
hturki@cs.cmu.edu

September 2023

Thesis Proposal

School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Thesis Committee
Deva Ramanan Carnegie Mellon University (chair)

Shubham Tulsiani Carnegie Mellon University
Jessica K. Hodgins Carnegie Mellon University
Angjoo Kanazawa University of California, Berkeley
Jonathan T. Barron Google Research

Submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

© Haithem Turki, 2023

Abstract

Advances in neural rendering techniques have led to significant progress to-
wards photo-realistic novel view synthesis. When combined with increases in data
processing and compute capability, this promises to unlock numerous VR applica-
tions, from search and rescue to autonomous driving. Large-scale virtual reality,
long the domain of science fiction, feels markedly more tangible.

This proposal aims to advance the frontier of large-scale neural rendering by
building uponNeural Radiance Fields (NeRFs) [64], a family of methods attracting
attention due to their state-of-the-art rendering quality and conceptual simplicity.
As of July 2023, at least 3,000 papers have been proposed by research groups across
the world across numerous use cases [75]. However, numerous shortcomings re-
main. The first is scale itself. Only a handful of existing methods capture scenes
larger than a single object or room. Those that do only handle static scenes, which
limits their applicability. Another is quality, as NeRF assumes ideal viewpoint con-
ditions that are unrealistic in practice and degradeswhen they are violated. Render-
ings are especially poor in under-observed regions. This is problematic for dynamic
city-scale scenes where it is impossible to densely sample every location and time
step. Speed is a third issue, as rendering falls below interactive thresholds. Current
acceleration methods remain too slow or degrade quality at high resolution.

To address scaling, we design a sparse network structure that specializes pa-
rameters to different regions of the scene that can be trained in parallel, allowing
us to scale linearly as we increase model capacity (vs quadratically in the original
NeRF). We then extend our approach to build the largest dynamic NeRF repre-
sentation to date. As a first step towards improving quality, we propose an anti-
aliasing method with minimal performance overhead. To accelerate rendering, we
improve sampling efficiency through a hybrid surface-volumetric approach that en-
courages the model to represent as much of the world as possible through surfaces
(which require few samples per ray)whilemaintaining the freedom to render trans-
parency and finer details (which pure surface representations cannot capture). We
finally propose to further improve quality in underobserved regions through diffu-
sion models, which show promising results on single-object reconstructions.

I

Contents

1 Introduction 1
1.1 Overview of Pre-Thesis Research . 1
1.2 Proposed Work . 2

2 Mega-NeRF: Scalable Construction of Large-Scale NeRFs for Virtual Fly-
Throughs 4
2.1 Introduction . 4
2.2 Related Work . 7
2.3 Approach . 10
2.4 Experiments . 13
2.5 Discussion . 20

3 SUDS: Scalable Urban Dynamic Scenes 22
3.1 Introduction . 22
3.2 Related Work . 25
3.3 Approach . 26
3.4 Experiments . 33
3.5 Discussion . 38

4 PyNeRF: Pyramidal Neural Radiance Fields 41
4.1 Introduction . 41
4.2 Related Work . 42
4.3 Approach . 44
4.4 Experiments . 48
4.5 Discussion . 53

5 Proposed Work: Fast Rendering via Hybrid Surface-Volume Representa-
tions 55
5.1 Introduction . 55
5.2 Related work . 56
5.3 Method . 57
5.4 Evaluation . 60

II

6 Proposed Work: Generative Models for Urban Scene Completion 61
6.1 Introduction . 61

7 Thesis Timeline 63

III

Chapter 1

Introduction

The goal of this thesis is to develop the foundations needed for large-scale neural
rendering. Given a set of images, camera poses, and auxiliary information (LiDAR,
optical flow...), how do we efficiently train a high-quality representation? We eval-
uate possible solutions along three principal axes:

Scale. What is the scale, in terms of geographic coverage and pixel count, that
our representations can capture? How do training and compute requirements
evolve as we increase along those dimensions?

Quality. How realistic are visuals that our model generates? Is quality uni-
formly high within the rendered scene, or does it degrade in certain areas?

Speed. Once trained, how fast is our model to render?

1.1 Overview of Pre-Thesis Research

1.1.1 Scale

Chapter 2 (Mega-NeRF) explores how to scaleNeRFs to larger settings. The original
NeRF encodes the entire scene representation into a monolithic MLP. Increasing
the model’s capacity, which is needed to faithfully reconstruct larger-scale scenes,
increases training and rendering time quadratically. We propose a spatial model
decomposition that instead scales linearly with model capacity and use it to train
representations far larger than prior work.

However, Mega-NeRF only handles static scenes, which limits its usefulness.
Chapter 3 (SUDS) extends the previous chapter’s methodology to target dynamic
scenes. It proposes an efficient three-branch hash table representation to build a
city-scale NeRF of Pittsburgh from 1.3 million frames across 1,700 videos, (to our
knowledge) the largest dynamic NeRF built to date.

1

Scale

Standard Hierachical Sampling Guided SamplingSpeed

?

Quality

Figure 1.1: Our goal is to train city-scale representations in a scalable manner (left)
that generate high-quality renderings from awide range of camera trajectories (bot-
tom right). Once trained, we aim to visualize our representation at interactive
frame rates (top right).

1.1.2 Quality

Although Chapters 2 and 3 address how to scale NeRFs across large spatial foot-
prints, rendering quality (especially for moving objects) remains significantly be-
low photo-realistic thresholds. We begin addressing this in Chapter 4 by proposing
a method (PyNeRF) that improves NeRF’s performance with when trained against
more freeform camera trajectories (such as when objects are viewed from difference
distances). As our goal is to enable large-scale rendering, ourmethodmust incur as
small a performance overhead as possible. Similar to the previous chapters, we do
so through model decomposition but now partition across rendering scales instead
of spatial footprint.

1.2 Proposed Work

1.2.1 Speed

Chapter 5 details our proposal to accelerate NeRF raycasting to the framerates
needed to for high-resolution interactive rendering while maintaining NeRF’s
desirable continuous volumetric properties (which make it easy to store and
simple to train). We wish to train a representation that encourages the model to
represent as much of the world as possible through surfaces while maintaining
the freedom to render transparency and finer details if needed. Once trained, we
explore how to query the model as efficiently as possible.

2

1.2.2 Quality

We revisit quality in Chapter 6. The city-scale NeRF described in Chapter 3 gen-
erates plausible renderings near camera viewpoints close to training poses but de-
grades when rendering under-observed areas. Dynamic objects, such as cars which
are captured from only a few viewpoints, fare especially poorly. We propose to ex-
tend recent efforts that use generativemodels to improve quality in under-observed
regions and adapt them to our setting.

3

Chapter 2

Mega-NeRF: Scalable Construction
of Large-Scale NeRFs for Virtual
Fly-Throughs

2.1 Introduction

We first explore the scalability of NeRFs. The vast majority of existing methods ex-
plore single-object scenes, often captured indoors or from synthetic data. To our
knowledge, Tanks and Temples [50] is the largest dataset used in NeRF evaluation,
spanning 463 m2 on average. In this work, we scale NeRFs to capture and inter-
actively visualize urban-scale environments from drone footage that is orders of
magnitude larger than any dataset to date, from 150,000 to over 1,300,000 m2 per
scene.

Search and Rescue. As a motivating use case, consider search-and-rescue,
where drones provide an inexpensive means of quickly surveying an area and
prioritizing limited first responder resources (e.g., for ground team deployment).
Because battery life and bandwidth limits the ability to capture sufficiently detailed
footage in real-time [25], collected footage is typically reconstructed into 2D
“birds-eye-view” maps that support post-hoc analysis [108]. We imagine a future
in which neural rendering lifts this analysis into 3D, enabling response teams to
inspect the field as if they were flying a drone in real-time at a level of detail far
beyond the achievable with classic Structure-from-Motion (SfM).

Challenges. Within this setting, we encounter multiple challenges. Firstly, ap-
plications such as search-and-rescue are time-sensitive. According to the National
Search and Rescue Plan [1], “the life expectancy of an injured survivor decreases
as much as 80 percent during the first 24 hours, while the chances of survival of
uninjured survivors rapidly diminishes after the first 3 days.” The ability to train
a usable model within a few hours would therefore be highly valuable. Secondly,
as our datasets are orders of magnitude larger than previously evaluated datasets

4

?

1

2

3

A B C

D E F

G H I

1

2

3

Training: Data Partitioning

Inference: View Synthesis

Figure 2.1: We scale neural reconstructions to massive urban scenes 1000x larger
than prior work. To do so, Mega-NeRF decomposes a scene into a set of spatial
cells (left), learning a separate NeRF submodule for each. We train each submod-
ule with geometry-aware pixel-data partitioning, making use of only those pixels
whose rays intersect that spatial cell (top right). For example, pixels from image 2
are added to the trainset of cells A, B, and F, reducing the size of each trainset by 10x.
To generate new views for virtual fly-throughs, we make use of standard raycast-
ing and point sampling, but query the encompassing submodule for each sampled
point (bottom right). To ensure view generation is near-interactive, wemake use of
temporal coherence by caching occupancy and color values from nearby previous
views (Fig. 2.4).

(Table 2.1), model capacity must be significantly increased in order to ensure high
visual fidelity, further increasing training time. Finally, although interactive ren-
dering is important for fly-through and exploration at the scale we capture, ex-
isting real-time NeRF renderers either rely on pretabulating outputs into a finite-
resolution structure, which scales poorly and significantly degrades rendering per-
formance, or require excessive preprocessing time.

Mega-NeRF. In order to address these issues, we propose Mega-NeRF, a frame-
work for training large-scale 3D scenes that support interactive human-in-the-loop
fly-throughs. We begin by analyzing visibility statistics for large-scale scenes, as
shown in Table 2.1. Because only a small fraction of the training images are visi-
ble from any particular scene point, we introduce a sparse network structure where

5

Scene Captured
Resolution # Images # Pixels/Rays / Image

Synthetic NeRF - Chair 400 x 400 400 256,000,000 0.271
Synthetic NeRF - Drums 400 x 400 400 256,000,000 0.302
Synthetic NeRF - Ficus 400 x 400 400 256,000,000 0.582
Synthetic NeRF - Hotdog 400 x 400 400 256,000,000 0.375
Synthetic NeRF - Lego 400 x 400 400 256,000,000 0.205
Synthetic NeRF - Materials 400 x 400 400 256,000,000 0.379
Synthetic NeRF - Mic 400 x 400 400 256,000,000 0.518
Synthetic NeRF - Ship 400 x 400 400 256,000,000 0.483
T&T - Barn 1920 x 1080 384 796,262,400 0.135
T&T - Caterpillar 1920 x 1080 368 763,084,800 0.216
T&T - Family 1920 x 1080 152 315,187,200 0.284
T&T - Ignatius 1920 x 1080 263 545,356,800 0.476
T&T - Truck 1920 x 1080 250 518,400,000 0.225
Mill 19 - Building 4608 x 3456 1940 30,894,981,120 0.062
Mill 19 - Rubble 4608 x 3456 1678 26,722,566,144 0.050
Quad 6k 1708 x 1329 5147 11,574,265,679 0.010
UrbanScene3D - Residence 5472 x 3648 2582 51,541,512,192 0.059
UrbanScene3D - Sci-Art 4864 x 3648 3019 53,568,749,568 0.088
UrbanScene3D - Campus 5472 x 3648 5871 117,196,056,576 0.028

Table 2.1: Scene properties from the commonly used Synthetic NeRF and Tanks
and Temples datasets (T&T) compared to our target datasets (below). Our tar-
gets contain an order-of-magnitude more pixels (and hence rays) than prior work.
Moreoever, each image captures significantly less of the scene, motivating a mod-
ular approach where spatially-localized submodules are trained with a fraction of
relevant image data.

parameters are specialized to different regions of the scene. We introduce a simple
geometric clustering algorithm that partitions training images (or rather pixels) into
different NeRF submodules that can be trained in parallel. We further exploit spa-
tial locality at render time to implement a just-in-time visualization technique that
allows for interactive fly-throughs of the captured environment.

Prior art. Our approach of using “multiple” NeRF submodules is closely in-
spired by the recent work of DeRF [76] and KiloNeRF [78], which use similar in-
sights to accelerate inference (or rendering) of an existing, pre-trained NeRF. How-
ever, even obtaining a pre-trainedNeRF for our scene scales is essentially impossible
with current training pipelines. We demonstrate that modularity is vital for train-
ing, particularlywhen combinedwith an intelligent strategy for “sharding” training
data into the appropriate modules via geometric clustering.

Contributions. We propose a reformulation of the NeRF architecture that spar-
sifies layer connections in a spatially-aware manner, facilitating efficiency improve-

6

Resolution # Images # Pixels/Rays
Synthetic NeRF [64] 400 x 400 400 256,000,000
LLFF [63] 4032 x 3024 41 496,419,840
Light Field [125] 1280 x 720 214 195,910,200
Tanks and Temples [50] 1920 x 1080 283 587,658,240
Phototourism [46] 919 x 794 1708 1,149,113,846
Mill 19 4608 x 3456 1809 28,808,773,632
Quad 6k [20] 1708 x 1329 5147 11,574,265,679
UrbanScene3D [58] 5232 x 3648 3824 74,102,106,112

Table 2.2: Comparison of datasets commonly used in view synthesis (above) rela-
tive to those evaluated in our work (below). We average the resolution, number of
images, and total number of pixels across each captured scene. We report statistics
for Light Field and Tanks and Temples using the splits in [126] and [122] respec-
tively. For Phototourism we average across the scenes used in [61].

ments at training and rendering time. We then adapt the training process to ex-
ploit spatial locality and train themodel subweights in a fully parallelizablemanner,
leading to a 3x improvement in training speed while exceeding the reconstruction
quality of existing approaches. In conjunction, we evaluate existing fast render-
ing approaches against our trained Mega-NeRF model and present a novel method
that exploits temporal coherence. Our technique requires minimal preprocessing,
avoids the finite resolution shortfalls of other renderers, and maintains a high level
of visual fidelity. We also present a new large-scale dataset containing thousands
of HD images gathered from drone footage over 100,000 m2 of terrain near an in-
dustrial complex.

2.2 Related Work

Fast rendering. Conventional NeRF rendering falls well below interactive thresh-
olds. Plenoctree [122], SNeRG [41], and FastNeRF [36] speed up the process by
storing precomputed non-viewdependentmodel outputs into a separate data struc-
ture such as a sparse voxel octree. These renderers then bypass the original model
entirely at render time by computing the final view-dependent radiance through a
separate smaller multi-layer perceptron (MLP) or through spherical basis compu-
tation. Although they achieve interactivity, they suffer from the finite capacity of
the caching structure and poorly capture low-level details at scale.

DeRF [76] decomposes the scene into multiple cells via spatial Voronoi parti-
tioning. Each cell is independently rendered using a smaller MLP, accelerating ren-

7

Figure 2.2: Visualization ofMill 19 byMega-NeRF. The top panel shows a high-level
3D rendering of Mill 19 within our interactive visualizer. The bottom-left panel
contains a ground truth image captured by our drone. The following two panels
illustrate the model reconstruction along with the associated depth map.

dering by 3x over NeRF. KiloNeRF [78] divides the scene into thousands of even
smaller networks. Although similar in spirit to Mega-NeRF, these methods use
spatial partitioning to speed up inference while we use it to enable data parallelism
for scalable training. Both DeRF and KiloNERF are initialized with a single large
network trained on all data which is then distilled into smaller networks for fast
inference, increasing processing time by over 2x for KiloNeRF. Training on all avail-
able data is prohibitive at our scale. Instead, our crucial insight is to geometrically
partition training pixels into small data shards relevant for each submodule, which
is essential for efficient training and high accuracy.

DONeRF [67] accelerates rendering by significantly reducing the number of

8

samples queried per ray. Tomaintain quality, these samples are placedmore closely
around the first surface the ray intersects, similar to our guided sampling approach
described in Sec. 2.3.3. In contrast to our method, DONeRF uses a separate depth
oracle network trained against ground truth depth data.

Unbounded scenes. Although most NeRF-related work targets indoor areas,
NeRF++ [126] handles unbounded environments by partitioning the space into a
unit sphere foreground region that encloses all camera poses and a background
region that covers the inverted sphere complement. A separate MLP model repre-
sents each area and performs ray casting independently before a final composition.
Mega-NeRF employs a similar foreground/background partitioning although we
further constrain our foreground and sampling bounds as described in Sec. 2.3.1.

NeRF in the Wild [61] augments NeRF’s model with an additional transient
head and learned per-image embeddings to better explain lighting differences
and transient occlusions across images. Although it does not explicitly target
unbounded scenes, it achieves impressive results against outdoor sequences in
the Phototourism [46] dataset. We adopt similar appearance embeddings for
Mega-NeRF and quantify its impact in Sec. 2.4.2.

Concurrent to us, Urban Radiance Fields [80] (URF), BungeeNeRF [113], and
BlockNeRF [91] target urban-scale environments. URF makes use of lidar inputs,
while CityNeRFmakes use of multi-scale datamodeling. Bothmethods can be seen
as complementary to our approach, implying combining them with Mega-NeRF
is promising. Most related to us is BlockNeRF [91], which decomposes a scene
into spatial cells of fixed city blocks. Mega-NeRF makes use of geometry visibility
reasoning to decompose the set of training pixels, allowing for pixels captured from
far-away cameras to still influence a spatial cell (Fig. 3.1).

Training speed. Several works speed upmodel training by incorporating priors
learned from similar datasets. PixelNeRF [121], IBRNet [105], and GRF [98] con-
dition NeRF on predicted image features while Tancik et al. [92] use meta-learning
to find good initial weight parameters that converge quickly. We view these efforts
as complementary to ours.

Graphics. We note longstanding efforts within the graphics community
covering interactive walkthroughs. Similar to our spatial partioning, Teller and
Séquin [95] subdivide a scene into cells to filter out irrelevant geometry and speed
up rendering. Funkhouser and Séquin [30] separately describe an adaptive display
algorithm that iteratively adjusts image quality to achieve interactive frame rates
within complex virtual environments. Our renderer takes inspiration from this
gradual refinement approach.

Large-scale SfM. We take inspiration from previous large-scale reconstruction
efforts based on classical Structure-from-Motion (SfM), in particular Agarwal et al’s
seminal “Building Rome in a Day,” [6] which describes city-scale 3D reconstruction
from internet-gathered data.

9

2.3 Approach

We first describe our model architecture in Sec. 2.3.1, then our training process in
2.3.2, and finally propose a novel renderer that exploits temporal coherence in 2.3.3.

2.3.1 Model Architecture

Background. We begin with a brief description of Neural Radiance Fields
(NeRFs) [64]. NeRFs represent a scene within a continuous volumetric radiance
field that captures both geometry and view-dependent appearance. NeRF encodes
the scenes within the weights of a multilayer perceptron (MLP). At render time,
NeRF projects a camera ray r for each image pixel and samples along the ray.
For a given point sample pi, NeRF queries the MLP at position xi = (x, y, z) and
ray viewing direction d = (d1, d2, d3) to obtain opacity and color values σi and
ci = (r, g, b). It then composites a color prediction Ĉ(r) for the ray using numerical
quadrature ∑N−1

i=0 Ti(1 − exp(−σiδi)) ci, where Ti = exp(−
∑i−1

j=0 σjδj) and δi is
the distance between samples pi and pi+1. The training process optimizes the
model by sampling batches R of image pixels and minimizing the loss function∑

r∈R
∥∥C(r)− Ĉ(r)

∥∥2. NeRF samples camera rays through a two-stage hierarchical
sampling process and uses positional encoding to better capture high-frequency
details. We refer the reader to the NeRF paper [64] for additional information.

Spatial partitioning. Mega-NeRF decomposes a scene into cells with centroids
n∈N = (nx, ny, nz) and initializes a corresponding set of model weights fn. Each
weight submodule is a sequence of fully connected layers similar to the NeRF ar-
chitecture. Similar to NeRF in theWild [61], we associate an additional appearance
embedding vector l(a) for each input image a used to compute radiance. This allows
Mega-NeRF additional flexibility in explaining lighting differences across images
which we found to be significant at the scale of the scenes that we cover. At query
time, Mega-NeRF produces an opacity σ and color c = (r, g, b) for a given position
x, direction d, and appearance embedding l(a) using the model weights fn closest
to the query point:

fn(x) = σ (2.1)
fn(x,d, l(a)) = c (2.2)
where n = argmin

n∈N

∥∥n− x
∥∥2 (2.3)

Centroid selection. Althoughwe explored several methods, including k-means
clustering and uncertainty-based partitioning as in [118], we ultimately found that
tessellating the scene into a top-down 2D gridworkedwell in practice. This method
is simple to implement, requires minimal preprocessing, and enables efficient as-
signment of point queries to centroids at inference time. As the variance in altitude

10

NeRF++ Drone-NeRF

Figure 2.3: Ray Bounds. NeRF++ (left) samples within a unit sphere centered
within and enclosing all camera poses to render its foreground component and uses
a different methodology for the outer volume complement to efficiently render the
background. Mega-NeRF (right) uses a similar background parameterization but
models the foreground as an ellipsoid to achieve tighter bounds on the region of
interest. It also uses camera altitude measurements to constrain ray sampling and
not query underground regions.

between camera poses in our scenes is small relative to the differences in latitude
and longitude, we fix the height of the centroids to the same value.

Foreground and background decomposition. Similar to NeRF++ [126], we
further subdivide the scene into a foreground volume enclosing all camera poses
and a background covering the complementary area. Both volumes are modeled
with separate Mega-NeRFs. We use the same 4D outer volume parameterization
and raycasting formulation as NeRF++ but improve upon its unit sphere partition-
ing by instead using an ellipsoid that more tightly encloses the camera poses and
relevant foreground detail. We also take advantage of camera altitude measure-
ments to further refine the sampling bounds of the scene by terminating rays near
ground level. Mega-NeRF thus avoids needlessly querying underground regions
and samples more efficiently. Fig. 2.3 illustrates the differences between both ap-
proaches.

2.3.2 Training

Spatial Data Parallelism. As eachMega-NeRF submodule is a self-containedMLP,
we can train each in parallel with no inter-module communication. Crucially, as
each image captures only a small part of the scene (Table 2.1), we limit the size of
each submodule’s trainset to only those potentially relevant pixels. Specifically, we
sample points along the camera ray corresponding to each pixel for each training
image, and add that pixel to the trainset for only those spatial cells it intersects
(Fig. 3.1). In our experiments, this visibility partitioning reduces the size of each
submodule’s trainset by 10x compared to the initial aggregate trainset. This data
reduction should be even more extreme for larger-scale scenes; when training a
NeRF forNorth Pittsburgh, one need not addpixels of South Pittsburgh. We include
a small overlap factor between cells (15% in our experiments) to further minimize

11

(a) Fixed Octree (b) Dynamically Expanded Octree (c) Reused Octree (next frame)

Figure 2.4: Mega-NeRF-Dynamic. Current renderers (such as Plenoctree [122])
cache precomputed model outputs into a fixed octree, limiting the resolution of
rendered images (a). Mega-NeRF-Dynamic dynamically expands the octree based
on the current position of the fly-through (b). Because of the temporal coherence of
camera views, the next-frame rendering (c) can reuse of much of expanded octree.

visual artifacts near boundaries.
Spatial Data Pruning. Note that the initial assignment of pixels to spatial cells

is based on camera positions, irrespective of scene geometry (because that is not
known at initialization). Once NeRF gains a coarse understanding of the scene,
one could further prune away irrelevant pixels/rays that don’t contribute to a par-
ticular NeRF due to an intervening occluder. For example, in Fig. 3.1, early NeRF
optimization might infer a wall in cell F, implying that pixels from image 2 can then
be pruned from cell A and B. Our initial exploration found that this additional visi-
bility pruning further reduced trainset sizes by 2x. We provide details in Sec. 4.4.6.

2.3.3 Interactive Rendering

We propose a novel interactive rendering method in addition to an empirical eval-
uation of existing fast renderers on top of Mega-NeRF in Sec. 2.4.3. In order to
satisfy our search-and-rescue usecase, we attempt to: (a) preserve visual fidelity,
(b) minimize any additional processing time beyond training the base model, and
(c) accelerate rendering, which takes over 2 minutes for a 720p frame with normal
ray sampling, to something more manageable.

Caching. Most existing fast NeRF renderers make use of cached precompu-
tation to speed up rendering, which may not be effective at our scene scale. For
example, Plenoctree [122] precomputes a cache of opacity and spherical harmonic
coefficients into a sparse voxel octree. Generating the entire 8-level octree for our
scenes took an hour of computation and anywhere from 1 to 12 GB of memory
depending on the radiance format. Adding a single additional level increased the
processing time to 10 hours and the octree size to 55GB, beyond the capacity of all
but the largest GPUs.

Temporal coherence. We explore an orthogonal direction that exploits the tem-

12

poral coherence of interactive fly-throughs; once the information needed to render
a given view is computed, we reuse much of it for the next view. Similar to Plenoc-
tree, we begin by precomputing a coarse cache of opacity and color. In contrast to
Plenoctree, we dynamically subdivide the tree throughout the interactive visualiza-
tion. Fig. 2.4 illustrates our approach. As the camera traverses the scene, our ren-
derer uses the cached outputs to quickly produce an initial view and then performs
additional rounds of model sampling to further refine the image, storing these new
values into the cache. As each subsequent frame has significant overlap with its
predecessor, it benefits from the previous refinement and needs to only perform a
small amount of incremental work to maintain quality.

Guided sampling. We perform a final round of guided ray sampling after re-
fining the octree to further improve rendering quality. We render rays in a single
pass in contrast to NeRF’s traditional two-stage hierachical sampling by using the
weights stored in the octree structure. As our refined octree gives us a high-quality
estimate of the scene geometry, we need to place only a small number of samples
near surfaces of interest. Fig. 2.5 illustrates the difference between both approaches.
Similar to other fast renderers, we further accelerate the process by accumulating
transmittance along the ray and ending sampling after a certain threshold.

2.4 Experiments

Our evaluation of Mega-NeRF is motivated by the following two questions. First,
given a finite training budget, how accurately canMega-NeRF capture a scene? Fur-
thermore, after training, is it possible to render accurately at scale whileminimizing
latency?

Qualitative results. We present two sets of qualitative results. Fig. 2.6 com-
pares Mega-NeRF’s reconstruction quality to existing view synthesis methods. In
all cases Mega-NeRF captures a high level of detail while avoiding the numerous
artifacts present in the other approaches. Fig. 2.7 then illustrates the quality of exist-
ing fast renderers and our method on top of the same base Mega-NeRFmodel. Our
approach generates the highest quality reconstructions in almost all cases, avoiding
the pixelization of voxel-based renderers and the blurriness of KiloNeRF.

2.4.1 Evaluation protocols

Datasets. We evaluate Mega-NeRF against multiple varied datasets. Our Mill 19
dataset consists of two scenes we recorded firsthand near a former industrial com-
plex. Mill 19 - Building consists of footage captured in a grid pattern across a large
500 × 250 m2 area around an industrial building. Mill 19 - Rubble covers a nearby
construction area full of debris inwhichwe placed humanmannequinsmasquerad-
ing as survivors. We also measure Mega-NeRF against two publicly available col-
lections - the Quad 6k dataset [20], a large-scale Structure-from-Motion dataset col-

13

Standard Hierachical Sampling Guided Sampling

Figure 2.5: Guided Sampling. Standard NeRF (left) first samples coarsely at uni-
form intervals along the ray and subsequently performs another round of sampling
guided by the coarse weights. Mega-NeRF-Dynamic (right) uses its caching struc-
ture to skip empty spaces and take a small number of samples near surfaces.

lected within the Cornell Universty Arts Quad, and several scenes from Urban-
Scene3D [58] which contain high-resolution drone imagery of large-scale urban
environments. We refine the initial GPS-derived camera poses in the Mill 19 and
UrbanScene3D datasets and the estimates provided in the Quad 6k dataset using
PixSFM [59]. We use a pretrained semantic segmentation model [26] to produce
masks of commonmovable objects in theQuad 6k dataset and ignoremasked pixels
during training.

Training. We evaluate Mega-NeRF with 8 submodules each consisting of 8 lay-
ers of 256 hidden units and a final fully connected ReLU layer of 128 channels. We
use hierarchical sampling during training with 256 coarse and 512 fine samples per
ray in the foreground regions and 128/256 samples per ray in the background. In
contrast toNeRF,we use the sameMLP to query both coarse and fine sampleswhich
reduces our model size and allows us to reuse the coarse network outputs during
the second rendering stage, saving 25% model queries per ray. We adopt mixed-
precision training to further accelerate the process. We sample 1024 rays per batch
and use the Adam optimizer [49] with an initial learning rate of 5× 10−4 decaying
exponentially to 5 × 10−5. We employ the procedure described in [61] to finetune
Mega-NeRF’s appearance embeddings.

2.4.2 Scalable training

Baselines. We evaluate Mega-NeRF against the original NeRF [64] architecture
and NeRF++ [126]. We also evaluate our approach against Stable View Synthe-
sis [81], an implementation of DeepView [27], and dense reconstructions from
COLMAP [87], a traditional Multi-View Stereo approach, as non-neural radiance
field-based alternatives.

14

M
ill

19
-B

ui
ld

in
g

M
ill

19
-R

ub
bl

e
Q

ua
d

6K
U

S
-R

es
id

en
ce

U
S

-S
ci

A
rt

U
S

-C
am

pu
s

Mega-NeRF (ours) NeRF++ SVS MVS Ground Truth

Figure 2.6: Scalable training. Mega-NeRF generates the best reconstructions while
avoiding the artifacts present in the other approaches.

Mill 19 - Building Mill 19 - Rubble Quad 6k
↑PSNR ↑SSIM ↓LPIPS ↓Time (h) ↑PSNR ↑SSIM ↓LPIPS ↓Time(h) ↑PSNR ↑SSIM ↓LPIPS ↓Time(h)

NeRF 19.54 0.525 0.512 59:51 21.14 0.522 0.546 60:21 16.75 0.559 0.616 62:48
NeRF++ 19.48 0.520 0.514 89:02 20.90 0.519 0.548 90:42 16.73 0.560 0.611 90:34
SVS 12.59 0.299 0.778 38:17 13.97 0.323 0.788 37:33 11.45 0.504 0.637 29:48
DeepView 13.28 0.295 0.751 31:20 14.47 0.310 0.734 32:11 11.34 0.471 0.708 19:51
MVS 16.45 0.451 0.545 32:29 18.59 0.478 0.532 31:42 11.81 0.425 0.594 18:55
Mega-NeRF 20.93 0.547 0.504 29:49 24.06 0.553 0.516 30:48 18.13 0.568 0.602 39:43

UrbanScene3D - Residence UrbanScene3D - Sci-Art UrbanScene3D - Campus
↑PSNR ↑SSIM ↓LPIPS ↓Time (h) ↑PSNR ↑SSIM ↓LPIPS ↓Time(h) ↑PSNR ↑SSIM ↓LPIPS ↓Time(h)

NeRF 19.01 0.593 0.488 62:40 20.70 0.727 0.418 60:15 21.83 0.521 0.630 61:56
NeRF++ 18.99 0.586 0.493 90:48 20.83 0.755 0.393 95:00 21.81 0.520 0.630 93:50
SVS 16.55 0.388 0.704 77:15 15.05 0.493 0.716 59:58 13.45 0.356 0.773 105:01
DeepView 13.07 0.313 0.767 30:30 12.22 0.454 0.831 31:29 13.77 0.351 0.764 33:08
MVS 17.18 0.532 0.429 69:07 14.38 0.499 0.672 73:24 16.51 0.382 0.581 96:01
Mega-NeRF 22.08 0.628 0.489 27:20 25.60 0.770 0.390 27:39 23.42 0.537 0.618 29:03

Table 2.3: Scalable training. We compare Mega-NeRF to NeRF, NeRF++, Stable
View Synthesis (SVS), DeepView, andMulti-View Stereo (MVS) after running each
method to completion. Mega-NeRF consistently outperforms the baselines even
after allowing other approaches to train well beyond 24 hours.

15

We use the same Pytorch-based framework and data loading infrastructure
across all of NeRF variants to disentangle training speed from implementation
specifics. We also use mixed precision training and the same number of samples
per ray across all variants. We provide each implementation with the same amount
of model capacity as Mega-NeRF by setting the MLP width to 2048 units. We base
our DeepView baseline on a publicly available implementation and use the official
Stable View Synthesis and COLMAP implementations.

Metrics. We report quantitative results based on PSNR, SSIM [106], and the
VGG implementation of LPIPS [127]. We also report training times as measured on
a single machine with 8 V100 GPUs.

Results. We run all methods to completion, training all NeRF-based methods
for 500,000 iterations. We show results in Table 2.3 along with the time taken to
finish training. Mega-NeRF outperforms the baselines even after training the other
approaches for longer periods.

2.4.3 Interactive exploration

Baselines. We evaluate two existing fast renderers, Plenoctree and KiloNeRF, in ad-
dition to our dynamic renderer. We base all renderers against the sameMega-NeRF
model trained in 2.4.2 with the exception of the Plenoctree method which is trained
on a variant using spherical harmonics. We accordingly label our rendering vari-
ants as Mega-NeRF-Plenoctree, Mega-NeRF-KiloNeRF, and Mega-NeRF-Dynamic
respectively. We measure traditional NeRF rendering as an additional baseline,
which we refer to as Mega-NeRF-Full, and Plenoxels [85] which generates a sparse
voxel structure similar to Plenoctree but with trilinear instead of nearest-neighbor
interpolation.

Implementation. We bound the maximum tree size used by Mega-NeRF-
Dynamic according available GPU memory and set it to 20M elements in our
experiments. We track the number of pixels visible from each node as we traverse
the tree when rendering. We then subdivide the top k (16,384) nodes with the
most pixels. We observe maximum tree depths of roughly 12 in practice. As we
track which nodes contribute to which pixels, we also prune entries that have not
recently contributed in order to reclaim space whenever we hit capacity.

Metrics. We report the same perceptual metrics as in 2.4.2 and the time it takes
to render a 720p image. We evaluate only foreground regions as Plenoctree and
KiloNeRF assume bounded scenes. We also report any additional time needed to
generate any additional data structures needed for rendering beyond the basemodel
training time in the spirit of enabling fly-throughs within a day. As our renderer
presents an initial coarse voxel-based estimate before progressively refining the im-
age, we present an additional set of measurements, labeled as Mega-NeRF-Initial,
to quantify the quality and latency of the initial reconstruction.

Results. We list our results in Table 2.4. Although Mega-NeRF-Plenoctree ren-
ders most quickly, voxelization has a large visual impact. Plenoxels provides better

16

M
ill

19
-R

ub
bl

e
Q

ua
d

6K
U

S
-C

am
pu

s

Mega-NeRF-Fast (ours) Mega-NeRF-Plenoctree Mega-NeRF-KiloNeRF Mega-NeRF-Full Plenoxels

Figure 2.7: Interactive rendering. Plenoctree’s approach causes significant vox-
elization and Plenoxel’s renderings are blurry. KiloNeRF’s results are crisper but
capture less detail than Mega-NeRF-Dynamic and contain numerous visual arti-
facts.

best second-best Mill 19 Quad 6k UrbanScene3D
Preprocess Render Preprocess Render Preprocess Render

↑PSNR ↑SSIM ↓LPIPS Time (h) Time (s) ↑PSNR ↑SSIM ↓LPIPS Time (h) Time (s) ↑PSNR ↑SSIM ↓LPIPS Time (h) Time (s)
Mega-NeRF-Plenoctree 16.27 0.430 0.621 1:26 0.031 13.88 0.589 0.427 1:33 0.010 16.41 0.498 0.530 1:07 0.025
Mega-NeRF-KiloNeRF 21.85 0.521 0.512 30:03 0.784 20.61 0.652 0.356 27:33 1.021 21.11 0.542 0.453 34:00 0.824
Mega-NeRF-Full 22.96 0.588 0.452 - 101 21.52 0.676 0.355 - 174 24.92 0.710 0.393 - 122
Plenoxels 19.32 0.476 0.592 - 0.482 18.61 0.645 0.411 - 0.194 20.06 0.608 0.503 - 0.531
Mega-NeRF-Initial 17.41 0.447 0.570 1:08 0.235 14.30 0.585 0.386 1:31 0.214 17.22 0.527 0.506 1:10 0.221
Mega-NeRF-Dynamic 22.34 0.573 0.464 1:08 3.96 20.84 0.658 0.342 1:31 2.91 23.99 0.691 0.408 1:10 3.219

Table 2.4: Interactive rendering. We evaluate two existing fast renderers on top of
our basemodel, Mega-NeRF-Plenoctree andMega-NeRF-KiloNeRF, relative to con-
ventional rendering, labeled as Mega-NeRF-Full, Plenoxels, and our novel renderer
(below). Although PlenOctree achieves a consistently high FPS, its reliance on a
finite-resolution voxel structure causes performance to degrade significantly. Our
approach remains within 0.8 db in PSNR quality while accelerating rendering by
40x relative to conventional ray sampling.

renderings but still suffers from the same finite resolution shortfalls and is blurry
relative to the NeRF-based methods. Mega-NeRF-KiloNeRF comes close to inter-
activity at 1.1 FPS but still suffers from noticeable visual artifacts. Its knowledge
distillation and finetuning processes also require over a day of additional process-
ing. In contrast, Mega-NeRF-Dynamic remains within 0.8 db in PSNR of normal
NeRF renderingwhile providing a 40x speedup. Mega-NeRF-Plenoctree andMega-
NeRF-Dynamic both take an hour to build similar octree structures.

2.4.4 Diagnostics

Scaling properties. We explore Mega-NeRF’s scaling properties against the Mill 19
- Rubble dataset. We vary the total number of submodules and the number of chan-
nels per submodule across 1, 4, 9, and 16 submodules and 128, 256, and 512 chan-

17

1 Submodule 4 Submodules
Train Render Train Render

↑PSNR ↑SSIM ↓LPIPS Time (h) Time (s) ↑PSNR ↑SSIM ↓LPIPS Time (h) Time (s)
128 Channels 21.75 0.435 0.670 18:54 2.154 22.61 0.469 0.631 18:56 2.489
256 Channels 22.60 0.471 0.622 28:54 3.298 23.63 0.521 0.551 29:09 3.427
512 Channels 23.40 0.512 0.559 52:33 6.195 24.53 0.581 0.482 52:34 6.313

9 Submodules 16 Submodules
Train Render Train Render

↑PSNR ↑SSIM ↓LPIPS Time (h) Time (s) ↑PSNR ↑SSIM ↓LPIPS Time (h) Time (s)
128 Channels 23.08 0.495 0.594 19:01 2.633 23.34 0.513 0.568 19:02 2.851
256 Channels 24.17 0.559 0.508 29:13 3.793 24.52 0.584 0.481 29:14 3.991
512 Channels 25.11 0.625 0.438 53:36 6.671 25.68 0.659 0.407 53:45 6.870

Table 2.5: Model scaling. We scale up Mega-NeRF with additional submodules
(rows) and increased channel count per submodule (columns). Scaling up both in-
creases reconstruction quality, but increasing channels significantly increases both
training and rendering time (as measured for Mega-NeRF-Dynamic).

nels respectively. We summarize our findings in Table 2.5. Increasing the model
capacity along either dimension improves rendering quality, as depicted in Fig. 2.8.
However, although increasing the channel count severely penalizes training and
rendering speed, the number of submodules has less impact.

Data Pruning. Recall that the initial assignment of pixels to spatial cells is based
on camera positions, irrespective of scene geometry (because that is not known at
initialization time). However, Sec. 2.3.2 points out that one could repartition our
training sets with additional 3D knowledge. Intuitively, one can prune away irrel-
evant pixel/ray assignments that don’t contribute to a particular NeRF submodule
due to an intervening occluder (Fig. 2.9).

To explore this optimization, we further prune each data partition early into
the training process after the model gains a coarse 3D understanding of the scene
(100,000 iterations in our experiments). As directly querying depth information
using conventional NeRF rendering is prohibitive at our scale, we instead take in-
spiration from Plenoctree and tabulate the scene’s model opacity values into a fixed
resolution structure. We then calculate the intersection of each training pixel’s cam-
era ray against surfaceswithin the structure to generate newassignments. We found
that it took around 10 minutes to compute the model density values and 500ms per
image to generate the new assignments. We summarize our findings in Table 2.6.

Ablations. We compare Mega-NeRF to several ablations. Mega-NeRF-
no-embed removes the appearance embeddings from the model structure.
Mega-NeRF-embed-only conversely adds Mega-NeRF’s appearance embeddings
to the base NeRF architecture. Mega-NeRF-no-bounds uses NeRF++’s unit sphere
background/foreground partitioning instead of our formulation described in
2.3.1. Mega-NeRF-dense uses fully connected layers instead of spatially-aware
sparse connections. Mega-NeRF-joint uses the same model structure as Mega-
NeRF but trains all submodules jointly using the full dataset instead of using

18

12
8

C
ha

nn
el

s
25

6
C

ha
nn

el
s

51
2

C
ha

nn
el

s

1 Submodule 4 Submodules 9 Submodules 16 Submodules

Figure 2.8: Model scaling. Example rendering within our Mill 19 - Rubble dataset
across different numbers of submodules (columns) and channels per submodule
(rows). Mega-NeRF generates increasingly photo-realistic renderings as capacity
increases. Increasing the number of submodules increases the overall model capac-
ity with little impact to training and inference time.

Initial Assignment

After Pruning

Figure 2.9: Data pruning. The initial assignment of pixels to cells is based purely
on camera positions. We add each pixel to the training set of all cells it traverses,
leading to overlap between sets (top). After themodel gains a 3D understanding of
the scene, we can filter irrelevant pixels by instead assigning pixels based on camera
ray intersection with solid surfaces (bottom).

19

Mill 19 Quad 6k UrbanScene3D
↑PSNR ↑SSIM ↓LPIPS ↓Pixels ↑PSNR ↑SSIM ↓LPIPS ↓Pixels ↑PSNR ↑SSIM ↓LPIPS ↓Pixels

Original Data 22.50 0.550 0.511 0.211 18.13 0.568 0.602 0.390 23.65 0.644 0.500 0.270
Pruned Data 22.76 0.571 0.488 0.160 18.16 0.569 0.593 0.149 23.87 0.656 0.483 0.163

Table 2.6: Data pruning. The initial assignment of pixels to spatial cells is based
purely on rays emanating from camera centers, irrespective of scene geometry.
However, once a rough Mega-NeRF has been trained, coarse estimates of scene ge-
ometry can be used to prune irrelevant pixel assignments. Doing so reduces the
amount of training data for each submodule by up to 2x while increasing accuracy
for a fixed number of 500,000 iterations.

Mill 19 Quad 6k UrbanScene3D
↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS

Mega-NeRF-no-embed 20.42 0.500 0.561 16.16 0.544 0.643 19.45 0.587 0.545
Mega-NeRF-embed-only 21.48 0.494 0.566 17.91 0.559 0.638 22.79 0.611 0.537
Mega-NeRF-no-bounds 22.14 0.534 0.522 18.02 0.565 0.616 23.42 0.636 0.511
Mega-NeRF-dense 21.63 0.504 0.551 17.94 0.562 0.627 22.44 0.605 0.558
Mega-NeRF-joint 21.10 0.490 0.574 17.43 0.560 0.616 21.45 0.595 0.567
Mega-NeRF 22.34 0.540 0.518 18.08 0.566 0.602 23.60 0.641 0.504

Table 2.7: Diagnostics. We compareMega-NeRF to various ablations after 24 hours
of training. Each individual component contributes significantly to overall model
performance.

submodule-specific data partitions. We limit training to 24 hours for expediency.
We present our results in Table 2.7. Both the appearance embeddings and the

foreground/background decomposition have a significant impact on model per-
formance. Mega-NeRF also outperforms both Mega-NeRF-dense and Mega-NeRF-
joint, although Mega-NeRF-dense comes close in several scenes. We however note
that model sparsity accelerates rendering by 10x relative to fully-connected MLPs
and is thus essential for acceptable performance.

2.5 Discussion

Wepresent amodular approach for buildingNeRFs at previously unexplored scale.
We introduce a sparse and spatially aware network structure along with a simple
geometric clustering algorithm that partitions training pixels into different NeRF
submodules which can be trained in parallel. These modifications speed up train-
ing by over 3x while significantly improving reconstruction quality. Our empirical
evaluation of existing fast renderers on top of Mega-NeRF suggests that interac-
tive NeRF-based rendering at scale remains an open research question. We advo-
cate leveraging temporal smoothness to minimize redundant computation between
views as a valuable first step.

20

2.5.1 Limitations

Dynamic objects. We did not explicitly address dynamic scenes in this chapter, a
relevant factor for many human-centered use cases. Several NeRF-related efforts,
includingNR-NeRF [97], Nerfies [71], NeRFlow [24], and DynamicMVS [33] focus
on dynamism, but are non-trivial to scale to large urban scenes. We discuss this
further in Chapter 3.

Rendering speed. While the dynamic renderer avoids the pitfalls of existing
fast NeRF approaches, it does not reach the throughput needed for truly interactive
applications. We propose alternate solutions in Chapter 5.

Training speed. Although our training process is several factors quicker than
previous works, training time remains a significant bottleneck towards rapidmodel
deployment. One possible improvement is to use a more efficient representation
than MLPs. We propose such a representation in Chapter 3. Another option is to
introduce conditional priors to avoid needing to train each scene from scratch. We
explore how to best incorporate these in Chapter 6.

Pose accuracy. Pose accuracy is amongst the largest limiting factors to render-
ing quality. The initial models we trained using raw camera poses collected from
standard droneGPS and IMU sensorswere extremely blurry. Althoughmultiple ef-
forts [57, 107, 44, 62, 19] attempt to jointly optimize camera parameters duringNeRF
optimization, we found the results lacking relative to using offline structure-from-
motion based approaches as a preprocessing step. A hardware-based alternative
would be to use higher-accuracy RTK GPS modules when collecting footage.

Scale. Mega-NeRF explicitly targets urban-scale environments instead of
smaller single-object settings. Our tests against scenes from the Synthetic-NeRF
dataset suggests our ray bound strategy and per-image appearance embeddings
do not harm quality but that our spatial partitioning strategy reduces PSNR by
about 1 db relative to NeRF.

2.5.2 Societal impact

The capture of drone footage brings with it the possibility of inadvertently and acci-
dentally capturing privacy-sensitive information such as people’s faces and vehicle
license plate numbers. Furthermore, what is considered sensitive and not can vary
widely depending on the context.

One solution is the technique of “denaturing” first described byWang et al [103]
that allows for fine-grain policy guided removal of sensitive pixels at interactive
frame rates. As denaturing can be done at full frame rate, preprocessing should
not slow down training, although it is unclear what the impact of the altered pixels
would have on the resulting model. We leave this to future work.

21

Chapter 3

SUDS: Scalable Urban Dynamic
Scenes

3.1 Introduction

Scalable geometric reconstructions of cities have transformed our daily lives, with
tools such as Google Maps and Streetview [9] becoming fundamental to how we
navigate and interact with our environments. A watershed moment in the devel-
opment of such technology was the ability to scale structure-from-motion (SfM)
algorithms to city-scale footprints [7]. Since then, the advent of Neural Radiance
Fields (NeRFs) [64] has transformed this domain by allowing for photorealistic in-
teraction with a reconstructed scene via view synthesis.

The method described in Chapter 2 can be used to scale such representations
to neighborhood-scale reconstructions for virtual drive-throughs and photorealis-
tic fly-throughs. However, these maps remain static and frozen in time. This makes
capturing bustling human environments—complete with moving vehicles, pedes-
trians, and objects—impossible, limiting the usefulness of the representation.

Challenges. One possible solution is a dynamic NeRF that conditions on time
or warps a canonical space with a time-dependent deformation [71]. However, re-
constructing dynamic scenes is notoriously challenging because the problem is in-
herently under-constrained, particularly when input data is constrained to limited
viewpoints, as is typical from egocentric video capture [35]. One attractive solution
is to scale up reconstructions to many videos, perhaps collected at different days
(e.g., by an autonomous vehicle fleet). However, this creates additional challenges
in jointly modeling fixed geometry that holds for all time (such as buildings), ge-
ometry that is locally static but transient across the videos (such as a parked car),
and geometry that is truly dynamic (such as a moving person).

SUDS. In this paper, we propose SUDS: Scalable Urban Dynamic Scenes, a 4D
representation that targets both scale and dynamism. Our key insight is twofold;
(1) SUDS makes use of a rich suite of informative but freely available input sig-

22

RGB Static Dynamic

Depth Instances Flow
Figure 3.1: SUDS.We scale neural reconstructions to city scale by dividing the area
into multiple cells and training hash table representations for each. We show our
full city-scale reconstruction above and the derived representations below. Unlike
prior methods, our approach handles dynamism across multiple videos, disentan-
gling dynamic objects from static background andmodeling shadoweffects. Weuse
unlabeled inputs to learn scene flow and semantic predictions, enabling category-
and object-level scene manipulation.

23

(a) Voxel Lookup

static hash(vl,s)

dynamic hash(vl,d)
(b) Indexing

d→
AvidF(t)→

d→

(cs, σs, ϕs)

(cd, σd, ϕd, ρd, st−1, st+1)

(c) MLP Evaluation

(c, σ, ϕ, st−1, st+1)

(d) Output Blending

Figure 3.2: Model Architecture. (a) For a given input coordinate, we find the sur-
rounding voxels atL resolution levels for both the static and dynamic branches (far-
field branch omitted for clarity). (b) We assign indices to their corners by hashing
based on position in the static branch and position, time, and video id in the dy-
namic branch. We look up the feature vectors corresponding to the corners and in-
terpolate according to the relative position of the input coordinate within the voxel.
(c)We concatenate the result of each level, alongwith auxiliary inputs such as view-
ing direction, and pass the resulting vector into an MLP to obtain per-branch color,
density, and feature logits along with scene flow and the shadow ratio. (d) We
blend color, opacity, and feature logits as the weighted sum of the branches.

nals, such as LiDAR depth measurements and optical flow. Other dynamic scene
representations [52, 70] require supervised inputs such as panoptic segmentation
labels or bounding boxes, which are difficult to acquire with high accuracy for our
in-the-wild captures. (2) SUDS decomposes the world into 3 components: a static
branch thatmodels stationary topography that is consistent across videos, a dynamic
branch that handles both transient (e.g., parked cars) and truly dynamic objects
(e.g., pedestrians), and an environment map that handles far-field objects and sky.
We model each branch using a multi-resolution hash table with scene partitioning,
allowing SUDS to scale to an entire city spanning over 100 km2.

Contributions. Wemake the following contributions: (1) to our knowledge, we
build the first large-scale dynamic NeRF, (2) we introduce a scalable three-branch
hash table representation for 4D reconstruction, (3) we present state-of-the-art re-
construction on 3 different datasets. Finally, (4) we showcase a variety of down-
stream tasks enabled by our representation, including free-viewpoint synthesis,
3D scene flow estimation, and even unsupervised instance segmentation and 3D
cuboid detection.

24

3.2 Related Work

Below, we describe a non-exhaustive list of such approaches along axes relevant to
our work.

Scale. The original NeRF operated with bounded scenes. NeRF++ [126] and
mip-NeRF 360 [11] use non-linear scene parameterization to model unbounded
scenes. However, scaling up the size of the scene with a fixed size MLP leads to
blurry details and training instability while the cost of naively increasing the size of
the MLP quickly becomes intractable. BungeeNeRF [113] introduced a coarse-to-
fine approach that progressively adds more capacity to the network representation.
Mega-NeRF (Chapter 2) and Block-NeRF [91] partition the scene spatially and train
separate NeRFs for each partition. To model appearance variation, they incorpo-
rate per-image embeddings like NeRF-W [61]. Our approach similarly partitions
the scene into sub-NeRFs, making use of depth to improve partition efficiency and
scaling over an area 200x larger than Block-NeRF’s Alamo Square Dataset. Both of
these methods work only on static scenes.

Dynamics. Neural 3D Video Synthesis [55] and Space-time Neural Irradiance
Fields [112] add time as an input to handle dynamic scenes. Similar to our work,
NSFF [56], NeRFlow [24], and DyNeRF [34] incorporate 2D optical flow input and
warping-based regularization losses to enforce plausible transitions between ob-
served frames. Multiple methods [71, 74, 97, 72] instead disentangle scenes into a
canonical template and per-frame deformation field. BANMo [117] further incor-
porates deformable shapemodels and canonical embeddings to train articulated 3D
models from multiple videos. These methods focus on single-object scenes, and all
but [55] and [117] use single video sequences.

While many of the previous works use segmentation data to factorize dynamic
from static objects, D2NeRF [111] does this automatically through regularization
and explicitly handling shadows. Neural Groundplans [88] uses synthetic data to
do this decomposition from a single image. We borrow some of these ideas and
scale beyond synthetic and indoor scenes.

Object-centric approaches. Several approaches [69, 70, 45, 116, 123, 124] repre-
sent scenes as the composition of per-object NeRFmodels and a backgroundmodel.
NSG [70] is most similar to us as it also targets automotive data but cannot handle
ego-motion as our approach can. None of these methods target multi-video repre-
sentations and are fundamentally constrained by thememory required to represent
each object, with NSG needing over 1TB of memory to represent a 30 second video
in our experience.

Semantics. Follow-up works have explored additional semantic outputs in ad-
dition to predicting color. Semantic-NeRF [128] adds an extra head to NeRF that
predicts extra semantic category logits for any 3Dposition. Panoptic-NeRF [29] and
Panoptic Neural Fields [52] extend this to produce panoptic segmentations and the
latter uses a similar bounding-box based object and background decomposition as

25

NSG. NeSF [102] generalizes the notion of a semantic field to unobserved scenes.
As these methods are highly reliant on accurate annotations which are difficult to
reliably obtain in the wild at our scale, we instead use a similar approach to recent
works [51, 99] that distill the outputs of 2D self-supervised feature descriptors into
3D radiance fields to enable semantic understanding without the use of human la-
bels and extend them to larger dynamic settings.

Fast training. The original NeRF took 1-2 days to train. Plenoxels [86] and
DVGO [90] directly optimize a voxel representation instead of an MLP to train in
minutes or even seconds. TensoRF [16] stores its representation as the outer prod-
uct of low-rank tensors, reducing memory usage. Instant-NGP [66] takes this fur-
ther by encoding features in a multi-resolution hash table, allowing training and
rendering to happen in real-time. We use these tables as the base block of our three-
branch representation anduse our ownhashingmethod to support dynamics across
multiple videos.

Depth. Depth provides a valuable supervisory signal for learning high-quality
geometry. DS-NeRF [23] and Dense Depth Priors [82] incorporate noisy point
clouds obtained by structure from motion (SfM) in the loss function during op-
timization. Urban Radiance Fields [80] supervises with collected LiDAR data. We
also use LiDAR but demonstrate results on dynamic environments.

3.3 Approach

3.3.1 Inputs

Our goal is to learn a global representation that facilitates free-viewpoint rendering,
semantic decomposition, and 3D scene flow at arbitrary poses and time steps. Our
method takes as input ordered RGB images from N videos (taken at different days
with diverse weather and lighting conditions) and their associated camera poses.
Crucially, we make use of additional data as “free” sources of supervision given
contemporary sensor rigs and feature descriptors. Specifically, we use (1) aligned
sparse LiDAR depth measurements, (2) 2D self-supervised pixel (DINO [14]) de-
scriptors to enable semantic manipulation, and (3) 2D optical flow predictions to
model scene dynamics. All model inputs are generated without any human label-
ing or intervention.

3.3.2 Representation

Preliminaries. We build upon NeRF [64], which represents a scene within a con-
tinuous volumetric radiance field that captures both geometry and view-dependent
appearance. We refer the reader to Chapter 2 and [64] for more details.

Scene composition. To model large-scale dynamic environments, SUDS fac-
torizes the scene into three branches: (a) a static branch containing non-moving

26

topography consistent across videos, (b) a dynamic branch to disentangle video-
specific objects [34, 56, 111], moving or otherwise, and (c) a far-field environment
map to represent far-away objects and the sky, which we found important to sepa-
rately model in large-scale urban scenes [126, 100, 80].

However, conventionalNeRF trainingwithMLPs is computationally prohibitive
at our target scales. Inspired by Instant-NGP [66], we implement each branch using
multiresolution hash tables of F -dimensional feature vectors followed by a small
MLP, along with our own hash functions to index across videos.

Hash tables (Fig. 4.1). For a given input coordinate (x,d, t,vid) denoting the
position x ∈ R3, viewing direction d ∈ R3, frame index F ∈ {1, ..., T}, and video
id vid ∈ {1, ..., N}, we find the surrounding voxels in each table at l ∈ L resolution
levels, doubling the resolution between levels, which we denote as vl,s, vl,d, vl,e
for the static, dynamic, and far-field. The static branch makes use of 3D spatial
voxels vl,s, while the dynamic branchmakes use of 4D spacetime voxels vl,d. Finally,
the far-field branch makes use of 3D voxels vl,e (implemented via normalized 3D
direction vectors) that index an environment map. Similar to Instant-NGP [66],
rather than storing features at voxel corners, we compute hash indices il,s (or il,d or
il,e) for each corner with the following hash functions:

il,s = static hash(space(vl,s)) (3.1)
il,d = dynamic hash(space(vl,d), time(vl,d),vid) (3.2)
il,e = env hash(dir(vl,e),vid) (3.3)

We linearly interpolate features up to the nearest voxel vertices (but now rely-
ing on quadlinear interpolation for the dynamic 4D branch) and rely on gradient
averaging to handle hash collisions. Finally, to model the fact that different videos
likely contain distinct moving objects and illumination conditions, we add vid as
an auxiliary input to the hash, but do not use it for interpolation (since averaging
across distinct movers is unnatural). From this perspective, we leverage hashing
to effectively index separate interpolating functions for each video, without a linear
growth in memory with the number of videos. We concatenate the result of each
level into a feature vector f ∈ RLF , along with auxiliary inputs such as viewing
direction, and pass the resulting vector into an MLP to obtain per-branch outputs.

Static branch. We generate RGB images by combining the outputs of our three
branches. The static branch maps the feature vector obtained from the hash table
into a view-dependent color cs and a view-independent density σs. To model light-
ing variations which could be dramatic across videos but smoothwithin a video, we
condition on a latent embedding computed as a product of a video-specific matrix
Avid and a fourier-encoded time index F(t) (as in [117]):

σs(x) ∈ R (3.4)
cs(x,d, AvidF(t)) ∈ R3. (3.5)

27

Dynamic branch. While the static branch assumes the density σs is static, the
dynamic branch allows both the density σd and color cd to depend on time (and
video). We therefore omit the latent code when computing the dynamic radiance.
Because we find shadows to play a crucial role in the appearance of urban scenes
(Fig. 3.3), we explicitly model a shadow field of scalar values ρd ∈ [0, 1], used to scale
down the static color cs (as done in [111]):

σd(x, t,vid) ∈ R (3.6)
ρd(x, t,vid) ∈ [0, 1] (3.7)
cd(x, t,vid,d) ∈ R3 (3.8)

Far-field branch. Because the sky requires reasoning about far-field radiance
and because it can change dramatically across videos, we model far-field radiance
with an environment map ce(d,vid) ∈ R3 that depends on viewing direction d [80,
40] and a video id vid.

Rendering. We derive a single density and radiance value for any position by
computing theweighted sumof the static anddynamic components, combinedwith
the pointwise shadow reduction:

σ(x, t,vid) = σs(x) + σd(x, t,vid) (3.9)
c(x, t,vid,d) =

σs
σ
(1− ρd)cs(x,d, AvidF(t))

+
σd
σ
cd(x, t,vid,d) (3.10)

We then calculate the color Ĉ for a camera ray rwith direction d at a given frame
t and video vid by accumulating the transmittance along sampled points r(t) along
the ray, forcing the ray to intersect the far-field environment map if it does not hit
geometry within the foreground:

Ĉ(r, t,vid) =
∫ +∞

0
T (t)σ(r(t), t,vid)c(r(t), t,vid,d)dt

+ T (+∞)ce(d,vid), (3.11)

where T (t) = exp

(
−
∫ t

0
σ(r(s), t,vid)ds

)
. (3.12)

Feature distillation. We build semantic awareness into SUDS to enable the
open-world tasks described in Sec. 3.4.2. Similar to recent work [51, 99], we dis-
till the outputs of a self-supervised 2D feature extractor, namely DINO [14], as a
teacher model into our network. For a feature extractor that transforms an image
into a dense RH×W×C feature grid, we add a C-dimensional output head to each of

28

Full RGB Depth

RGB (Without Shadow) Shadow Intensity

Dynamic RGB Static RGB

(a) Shadow Field

Full RGB Depth

Dynamic RGB Static RGB

(b) No Shadow Field

Figure 3.3: Shadows. We learn an explicit shadowfield (a) as a pointwise reduction
on static color, enabling better depth reconstruction and static/dynamic factoriza-
tion than without (b).

29

our branches:

Φs(x) ∈ RC (3.13)
Φd(x, t,vid) ∈ RC (3.14)
Φe(d,vid) ∈ RC , (3.15)

which are combined into a single value Φ at any 3D location and rendered into
F̂ (r) per camera ray, following the equations for color (3.10, 3.11).

Scene flow. We train our model to predict 3D scene flow and model scene dy-
namics. Inspired by previous work [56, 24, 34], we augment our dynamic branch
to predict forward and backward 3D scene flow vectors st′∈[−1,1](x, t,vid) ∈ R3.
We make use of these vectors to enforce consistency between observed time steps
through multiple loss terms (Sec. 3.3.3), which we find crucial to generating plau-
sible renderings at novel time steps (Table 4.5).

Spatial partitioning. We scale our representation to arbitrarily large environ-
ments by decomposing the scene into individually trained models [100, 91], each
with its own static, dynamic, and far-field branch. Intuitively, the reconstruction for
neighborhood X can be done largely independantly of the reconstruction in neigh-
borhood Y, provided one can assign the relevant input data to each reconstruction.
To do so, we follow the approach of Mega-NeRF (Chapter 2) and split the scene
into K spatial cells with centroids k ∈ R3. Crucially, we generate separate training
datasets for each spatial cell by making use of visibility reasoning [31]. Mega-NeRF
includes only those datapoints whose associated camera rays intersect the spatial
cell. However, this may still include datapoints that are not visible due to an inter-
vening occluder (e.g., a particular camera in neighborhoodX can be pointed at neigh-
borhood Y, but may not see anything there due to occluding buildings). To remedy
this, we make use of depth measurements to prune irrelevant pixel rays that do not
terminate within the spatial cell of interest (making use of nearest-neighbor inter-
polation to impute depth for pixels without a LiDAR depth measurement). This
further reduces the size of each trainset by 2x relative to Mega-NeRF. Finally, given
such separate reconstructions, one can still produce a globally consistent rendering
by querying the appropriate spatial cell when sampling points along new-view rays
(as in Chapter 2).

3.3.3 Optimization

We jointly optimize all three of ourmodel branches alongwith the per-videoweight
matrices Avid by sampling random batches of rays across our N input videos and

30

RGB Features

Forward Flow (Input) Backward Flow (Input)

Forward Flow (Predicted) Backward Flow (Predicted)

Figure 3.4: Scene Flow. We minimize the photometric and feature-metric loss of
warped renderings relative to ground truth inputs (top). We use 2D optical flow
from off-the-shelf estimators or sparse correspondences computed directly from 2D
DINO features [8] (middle) to supervise our flow predictions (bottom).

minimizing the following loss:

L =
(
Lc + λfLf + λdLd + λoLo

)
︸ ︷︷ ︸

reconstruction losses

+
(
Lwc + λfLwf

)
︸ ︷︷ ︸
warping losses

λflo

(
Lcyc + Lsm + Lslo

)
︸ ︷︷ ︸

flow losses

+
(
λeLe + λdLd

)
︸ ︷︷ ︸

static-dynamic factorization

+ λρLρ.
(3.16)

Reconstruction losses. We minimize the L2 photometric loss Lc(r) =∥∥C(r)− Ĉ(r)
∥∥2 as in the original NeRF equation [64]. We similarly minimize the

L1 difference Lf (r) =
∥∥F (r)− F̂ (r)

∥∥
1
between the feature outputs of the teacher

model and that of our network.
To make use of our depth measurements, we project the LiDAR sweeps onto

the camera plane and compare the expected depth D̂(r) with the measurement

31

D(r) [23, 80]:

Ld(r) =
∥∥D(r)− D̂(r)

∥∥2 (3.17)

where D̂(r) =
∫ +∞

0
T (s)σ(r(s))ds (3.18)

Flow. We supervise our 3D scene flow predictions based on 2D optical flow
(Sec. 3.4.1). We generate a 2D displacement vector for each camera ray by first pre-
dicting its position in 3D space as the weighted sum of the scene flow neighbors
along the ray:

X̂t′(r) =
∫ +∞

0
T (t)σ(r(t))(r(t) + st′(r(t)))dt (3.19)

which we then “render” into 2D using the camera matrix of the neighboring
frame index. We minimize its distance from the observed optical flow via
Lo(r) =

∑
t′∈[−1,1]

∥∥X(o)− X̂t′(r)
∥∥
1
. We anneal λo over time as these estimates are

noisy.
3D warping. The above loss ensures that rendered 3D flow will be consistent

with the observed 2Dflow. We also found it useful to enforce 3D color (and feature)
constancy; i.e., colors remain constant even when moving. To do so, we use the
predicted forward and backward 3D flow st+1 and st−1 to advect each sample along
the ray into the next/previous frame:

σw
t′ (x+ st′ , t+ t′,vid) ∈ R (3.20)

cwt′ (x+ st′ , t+ t′,vid,d) ∈ R3 (3.21)
Φw
t′ (x+ st′ , t+ t′,vid) ∈ RC (3.22)

The warped radiance cw and density σw are rendered into warped color Ĉw(r)
and feature F̂w(r) (3.10, 3.11). We add a loss to ensure that the warped color (and
feature) match the ground-truth input for the current frame, similar to [56, 34].
As in NSFF [56], we found it important to downweight this loss in ambiguous re-
gions that may contain occlusions. However, instead of learning explicit occlusion
weights, we take inspiration from Kwea’s method [2] and use the difference be-
tween the dynamic geometry and the warped dynamic geometry to downweight
the loss:

wt′(x, t,vid) =
∣∣∣∣σdσ − σw

t′

σ

∣∣∣∣ (3.23)

Ŵt′(r) =
∫ +∞

0
T (t)σ(r(t))wt′(r(t))dt (3.24)

32

resulting in the following warping loss terms:

Lwc (r) =
∑

t′∈[−1,1]

(1−Wt′)(r))
∥∥C(r)− Ĉw

t′ (r)
∥∥2 (3.25)

Lwf (r) =
∑

t′∈[−1,1]

(1−Wt′)(r)
∥∥F (r)− F̂w

t′ (r)
∥∥
1

(3.26)

Flow regularization. As in priorwork [56, 34]we use a 3D scene flow cycle term
to encourage consistency between forward and backward scene flow predictions,
down-weighing the loss in areas ambiguous due to occlusions:

Lcyc(r) =
∑

t′∈[−1,1]

∑
x

wt′(x, t)
∥∥st′(x, t) + st(x+ st′ , t− t′)

∥∥
1
, (3.27)

with vid omitted for brevity. We also encourage spatial and temporal smooth-
ness through the same priors as NSFF [56]:

Lsm(r) =
∑
x

∑
t′∈[−1,1]

e
−2
∥∥x−x′

∥∥
2

∥∥st′(x, t)− st′(x′, t)
∥∥
1

+
∑
x

∥∥st−1(x, t) + st+1(x, t)
∥∥
1
, (3.28)

where x and x′ indicate neighboring points along the camera ray r.
We finally regularize the magnitude of predicted scene flow vectors to encour-

age the scene to be static through Lslo(r) =
∑

t′∈[t−1,t+1]

∑
x
∥∥st′(x, t)∥∥1.

Static-dynamic factorization. As physically plausible solutions should have
any point in space occupied by either a static or dynamic object, we encourage the
spatial ratio of static vs dynamic density to either be 0 or 1 through a skewed binary
entropy loss that favors static explanations of the scene [111]:

Le(r) =
∫ +∞

0
H

(
σd(r(t))

σs(r(t)) + σd(r(t))

k
)

dt (3.29)

where H(x) = −(x · log(x) + (1− x) · log(1− x)),

andwith k set to 1.75, and further penalize themaximumdynamic ratioLd(r) =
max(σd(r(t))

σs+σd
) along each ray.

Shadow loss. We penalize the squared magnitude of the shadow ratio
Lρ(r) =

∫ +∞
0 ρd(r(t))

2 dt along each ray to prevent it from over-explaining dark
regions [111].

3.4 Experiments

We demonstrate SUDS’s city-scale reconstruction capabilities by presenting quanti-
tative results against baseline methods (Table 3.1). We also show initial qualitative

33

RGB Static Dynamic Instances Bounding Boxes Categories

Figure 3.5: City-1M.We demonstrate SUDS’s capabilities on multiple downstream
tasks, including instance segmentation and 3D bounding box estimation without
any labeled data (by just making use of geometric clustering). In the last column,
we show category-level semantic classification bymatching 3D (DINO) descriptors
to a held-out video annotated with semantic labels. Please see text for more details.

results for a variety of downstream tasks (Sec. 3.4.2). Even though we focus on re-
constructing dynamic scenes at city scale, to faciliate comparisons with prior work,
we also show results on small-scale but highly-benchmarked datasets such as KITTI
andVirtual KITTI 2 (Sec. 3.4.3). We evaluate the various components of ourmethod
in Sec. 4.4.6.

3.4.1 Experimental Setup

2D feature extraction. We use Amir et al’s feature extractor implementation [8]
based on the dino vits8 model. We downsample our images to fit into GPU mem-
ory and then upsample with nearest neighbor interpolation. We L2-normalize the
features at the 11th layer of the model and reduce the dimensionality to 64 through
incremental PCA [4].

Flow supervision. We explored using an estimator trained on synthetic
data [94] in addition to directly computing 2D correspondences from DINO
itself [8]. Although the correspondences are sparse (less than 5% of pixels) and
expensive to compute, we found its estimates more robust and use it for our
experiments unless otherwise stated.

Training. We train SUDS for 250,000 iterations with 4098 rays per batch and
use a proposal sampling strategy similar to Mip-NeRF 360 [11]. We use Adam [49]
with a learning rate of 5× 10−3 decaying to 5× 10−4.

Metrics. We report quantitative results based on PSNR, SSIM [106], and the
AlexNet implementation of LPIPS [127].

34

Mega-NeRF (Chapter 2) Mega-NeRF-T Mega-NeRF-A SUDS
PSNR ↑ 16.42 16.46 16.70 21.67
SSIM ↑ 0.493 0.493 0.493 0.562
LPIPS ↓ 0.879 0.877 0.850 0.554

Table 3.1: City-scale view synthesis on City-1M. SUDS outperforms all baselines
by a wide margin.

≤ 15k 15-30k 30-45k ≥ 45k
↑PSNR 22.86 21.99 21.35 20.75
↑SSIM 0.583 0.569 0.557 0.538
↓LPIPS 0.516 0.545 0.564 0.578

Images

≤ 60 60-90 90-120 ≥ 120
↑PSNR 22.47 21.72 21.68 21.11
↑SSIM 0.587 0.556 0.559 0.555
↓LPIPS 0.526 0.557 0.557 0.565

Videos

≤ 2 km2 2-3 km2 3-4 km2 ≥ 4 km2

↑PSNR 22.73 21.47 21.53 22.18
↑SSIM 0.609 0.556 0.561 0.557
↓LPIPS 0.512 0.564 0.555 0.536

Area

Table 3.2: City-1M scaling. We evaluate the effect of geographic coverage and the
number of images and videos on cell quality. Although performance degrades sub-
linearly across all metrics, image and video counts have the largest impact.
3.4.2 City-Scale Reconstruction

City-1M dataset. We evaluate SUDS’s large-scale reconstruction abilities on our
collection of 1.28million images across 1700 videos gathered across a 105 km2 urban
area using a vehicle-mounted platform with seven ring cameras and two LiDAR
sensors. Due to the scale, we supervise optical flow with an off-the-shelf estimator
trained on synthetic data [94] instead of DINO for efficiency. We divide City-1M
into 48 cells using camera-based k-means clustering. Each cell covers 2.9 km2 and
32k frames across 98 videos on average.

Baselines. We compare SUDS to the officialMega-NeRF (Chapter 2) implemen-
tation alongside two variants: Mega-NeRF-T which directly adds time as an input
parameter to compute density and radiance, andMega-NeRF-Awhich instead uses
the latent embedding AvidF(t) used by SUDS.

Results. We train both SUDS and the baselines using 48 cells and summarize
our results in Table 3.1. SUDS outperforms all Mega-NeRF variants by a large mar-
gin. We provide qualitative results on view synthesis, static/dynamic factorization,
unsupervised 3D instance segmentation and unsupervised 3D cuboid detection in
Fig. 3.5 and tracking results in Fig. 3.6. We evaluate the effect of geographic coverage
and number of frames/videos on cell quality in Table 3.2.

35

Figure 3.6: Tracking. We track keypoints (above) and instance masks (below)
across several frames. As a 3D representation, SUDS can track correspondences
through 2D occluders.

KI
TT

I

SUDS (Ours)

VK
IT

TI
2

NeRF NeRF + Time NSG Ground Truth

Figure 3.7: KITTI and VKITTI2 view synthesis. Prior work fails to represent the
scene andNSG [70] renders ghosting artifacts near areas ofmovement. Ourmethod
forecasts plausible trajectories and generates higher-quality renderings.

Instance segmentation. We derive the instance count as in prior work [88] by
sampling dynamic density values σd, projecting those above a given threshold onto
a discretized ground plane before applying connected component labeling. We ap-
ply k-means to obtain 3D centroids and volume render instance predictions as for
semantic segmentation.

3D cuboid detection. After computing point-wise instance assignments in 3D,
we derive oriented bounding boxes based on the PCA of the convex hull of points
belonging to each instance [3].

Tracking. We can compute mask and keypoint-level correspondences across
frames after detecting instances (Sec. 3.4.2) by using Best-Buddies similarity [22]
on features Φwithin or between instances. As a 3D representation, SUDS can track
correspondences through 2D occluders. We show an example in Fig. 3.6.

Semantic segmentation. Note the above tasks of instance segmentation and 3D
cuboid detection do not require any additional labels as theymake use of geometric
clustering. We now show that the representation learned by SUDS can also enable
downstream semantic tasks, by making use of a small number of 2D segmentation
labels provided on a held-out video sequence. We compute the average 2D DINO

36

KITTI - 75% KITTI - 50% KITTI - 25%
↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS

NeRF [64] 18.56 0.557 0.554 19.12 0.587 0.497 18.61 0.570 0.510
NeRF + Time 21.01 0.612 0.492 21.34 0.635 0.448 19.55 0.586 0.505
NSG [70] 21.53 0.673 0.254 21.26 0.659 0.266 20.00 0.632 0.281
SUDS 22.77 0.797 0.171 23.12 0.821 0.135 20.76 0.747 0.198

VKITTI2 - 75% VKITTI2 - 50% VKITTI2 - 25%
↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS

NeRF [64] 18.67 0.548 0.634 18.58 0.544 0.635 18.17 0.537 0.644
NeRF + Time 19.03 0.574 0.587 18.90 0.565 0.610 18.04 0.545 0.626
NSG [70] 23.41 0.689 0.317 23.23 0.679 0.325 21.29 0.666 0.317
SUDS 23.87 0.846 0.150 23.78 0.851 0.142 22.18 0.829 0.160

Table 3.3: Novel View Synthesis. As the fraction of training views decreases, accu-
racy drops for all methods. However, SUDS consistently outperforms prior work,
presumably due to more accurate representations learned by our diverse input sig-
nals (such as depth and flow).

SRN [89] NeRF [64] NeRF + Time NSG [70] PNF [52] Ours
PSNR ↑ 18.83 23.34 24.18 26.66 27.48 28.31
SSIM ↑ 0.590 0.662 0.677 0.806 0.870 0.876

Table 3.4: KITTI image reconstruction. We outperform past work on image recon-
struction accuracy, following their experimental protocol and self-reported accura-
cies [70, 52].

descriptor for each semantic class from the held out frames and derive 3D semantic
labels for all reconstructions by matching each 3D descriptor to the closest class
centroid. This allows to produce 3D semantic label fields that can then be rendered
in 2D as shown in Fig. 3.5.

3.4.3 KITTI Benchmarks

Baselines. We compare SUDS to SRN [89], the original NeRF implementation [64],
a variant of NeRF taking time as an additional input, NSG [70], and PNF [52]. Both
NSG and PNF are trained and evaluated using ground truth object bounding box
and category-level annotations.

Image reconstruction. We compare SUDS’s reconstruction capabilities using
the same KITTI [37] subsequences and experimental setup as prior work [70, 52].
We present results in Table 3.4. As PNF’s implementation is not publicly available,
we rely on their reported numbers. SUDS surpasses the state-of-the-art in PSNR
and SSIM.

37

↑PSNR ↑SSIM ↓LPIPS
w/o Depth loss 22.74 0.715 0.292
w/o Optical flow loss 22.18 0.708 0.302
w/o Warping loss 17.53 0.622 0.478
w/o Appearance embedding 22.54 0.704 0.296
w/o Occlusion weights 22.56 0.711 0.297
w/o Separate branches 19.73 0.570 0.475
Full Method 22.95 0.718 0.289

Table 3.5: Diagnostics. Flow-based warping is the single-most important input,
while depth is the least crucial input.

Novel view synthesis. We demonstrate SUDS’s capabilities to generate plausi-
ble renderings at time steps unseen during training. AsNSGdoes not handle scenes
with ego-motion, we use subsequences of KITTI and Virtual KITTI 2 [32] with little
camera movement. We evaluate the methods using different train/test splits, hold-
ing out every 4th time step, every other time step, and finally training with only one
in every four time steps. We summarize our findings in Table 3.3 along with quali-
tative results in Fig. 3.7. SUDS achieves the best results across all splits and metrics.
BothNeRF variants fail to properly represent the scene, especially in dynamic areas.
Althoughwe provideNSGwith the ground truth object poses at render time, it fails
to learn a clean decomposition between objects and the background, especially as
the number of training view decreases, and generates ghosting artifacts near areas
of movement.

3.4.4 Diagnostics

We ablate the importance of major SUDS components by removing their respec-
tive loss terms along with occlusion weights, the latent embedding AvidF(t) used
to compute static color cs, and separate model branches. We run all approaches for
125,000 iterations across our datasets and summarize the results in Table 4.5. Al-
though all components help performance, flow-based warping is by far the single
most important input. Interestingly, depth is the least crucial input, suggesting that
SUDS can generalize to settings where depth measurements are not available.

3.5 Discussion

We present a modular approach towards building dynamic neural representations
at previously unexplored scale. Ourmulti-branch hash table structure enables us to
disentangle and efficiently encode static geometry and transient objects across thou-
sands of videos. SUDS makes use of unlabeled inputs to learn semantic awareness

38

and scene flow, allowing it to perform several downstream tasks while surpassing
state-of-the-art methods that rely on human labeling.

3.5.1 Limitations

Although SUDS scales neural rendering to (in our knowledge) the largest dynamic
NeRF representation to date, many open challenges remain. Its rendering quality,
especially with regards to dynamic objects, does not reach photorealistic levels. Its
training and rendering speeds, while faster than Mega-NeRF (Chapter 2), are still
prohibitively expensive. We address these shortcomings in the next chapters. We
list additional limitations below.

Video boundaries. Although our global representation of static geometry is
consistent across all videos used for reconstruction, all dynamic objects are video-
specific. Put otherwise, our method does not allow us to extrapolate the movement
of objects outside of the boundaries of videos from which they were captured, nor
does it provide a straightforward way of rendering dynamic visuals at boundaries
where camera rays intersect regions with training data originating from disjoint
video sequences.

Flow quality. Although our method tolerates some degree of noisiness in the
supervisory optical flow input, high-quality flow still has a measurable impact on
model performance (and completely incorrect supervision degrades quality). We
also assume that flow is linear between observed timestamps to simplify our scene
flow representation.

Resources. Modeling city scale requires a large amount of dataset preprocess-
ing, including, but not limited to: extractingDINO features, computing optical flow,
deriving normalized coordinate bounds, and storing randomized batches of train-
ing data to disk. Collectively, our intermediate representation required more than
20TB of storage even after compression.

Shadows. SUDS attempts to disentangle shadows underneath transient objects.
However, if a shadow is present in all observations for a given location (eg: a park-
ing spot that is always occupied, even by different cars), SUDS may attribute the
darkness to the static topology, as evidenced in several of our videos, even if the
origin of the shadow is correctly assigned to the dynamic branch.

Instance-level tasks. Although we provide initial qualitative results on
instance-level tasks as a first step towards true 3D segmentation backed by neural
radiance field, SUDS is not competitive with conventional approaches.

3.5.2 Societal Impact

As SUDS attempts to model dynamic urban scenes with pedestrians and vehicles,
our approach carries surveillance and privacy concerns related to the intentional
or inadvertent capture or privacy-sensitive information such as human faces and
vehicle license plate numbers. As we distill semantic knowledge into SUDS, we

39

are able to (imperfectly) filter out either entire categories (people) or components
(faces) at render time. However this information would still reside in the model
itself. This could in turn be mitigated by preprocessing the input data used to train
the model.

40

Chapter 4

PyNeRF: Pyramidal Neural
Radiance Fields

4.1 Introduction

After discussing how to scale neural representations in Chapters 2 and 3, we now
turn our attention to quality. Although NeRF provides state-of-the-art rendering
quality, it assumes invariants that are often infeasible in real-world scenarios. As an
example that we focus on in this chapter, it assumes that scene content is equidistant
from the camera. Rendering quality degrades due to aliasing and excessive blurring
when that assumption is violated. As an additional constraint relevant to city-scale
rendering, we want quality improvements to incur as little overhead as possible,
and be compatible with modern NeRF acceleration techniques such as the grid-
based representation described in Chapter 3.

Solutions such asMip-NeRF [10] address aliasing by projecting camera frustum
volumes instead of point-sampling rays. However, these anti-aliasing methods rely
on the base NeRF MLP representation (and are thus slow) and are incompatible
with grid representations due to their reliance on non-grid-based inputs.

Inspired by divide-and-conquer NeRF extensions [77, 78, 100, 91] and classi-
cal approaches such as Gaussian pyramids [5] and mipmaps [109], we propose a
simple approach that can easily be applied to any existing accelerated NeRF imple-
mentation. We train a pyramid of models at different scales, sample along camera
rays (as in the original NeRF), and simply query coarser levels of the pyramid for
samples that cover larger volumes (similar to voxel cone tracing [21]). Our method
is simple to implement and significantly improves the rendering quality of fast ren-
dering approaches with minimal performance overhead.

Contribution: Our primary contribution is a partitioning method that can be
easily adapted to any existing fast-rendering approach. We present state-of-the-art
reconstruction results against a wide range of datasets, including on novel scenes
we designed that explicitly target common aliasing patterns. We evaluate different

41

(a) NeRF (b) Mip-NeRF

(c) Grid Methods (eg: iNGP) (d) PyNeRF

Figure 4.1: Comparison of methods. (a) NeRF traces a ray from the camera’s cen-
ter of projection through each pixel and samples points x along each ray. Sample
locations are then encoded with a positional encoding to produce a feature γ(x)
that is fed into an MLP. (b) Mip-NeRF instead reasons about volumes by defining
a 3D conical frustum per camera pixel. It splits the frustum into sampled volumes,
approximates them as multivariate Gaussians, and computes the integral of the po-
sitional encodings of the coordinates contained within the Gaussians. Similar to
NeRF, these features are then fed into an MLP. (c) Accelerated grid methods, such
as iNGP, sample points as in NeRF, but do not use positional encoding and instead
featurize each point by interpolating between vertices in a feature grid. These fea-
tures are then passed into a much smaller MLP, which greatly accelerates training
and rendering. (d) PyNeRF also uses feature grids, but reasons about volumes by
training separate models at different scales (similar to a mipmap). It calculates the
area covered by each sample in world coordinates, queries the models at the closest
corresponding resolutions, and interpolates their outputs.

posssible architectures anddemonstrate that our design choices provide a high level
of visual fidelity while maintaining the rendering speed of fast NeRF approaches.

4.2 Related Work

Wediscuss a non-exhaustive list of such approaches along axes relevant to ourwork.
Grid-basedmethods. The original NeRF took 1–2 days to train, with extensions

for unbounded scenes [126, 11] taking longer. Once trained, rendering takes sec-

42

Level 1 Level 2 Level 3 Level 4

Figure 4.2: We visualize renderings from a pyramid of spatial grid-based NeRFs
trained for different voxel resolutions. Models at finer pyramid levels tend to cap-
ture finer content.

onds per frame and is far below interactive thresholds. NSVF [60] combinesNeRF’s
implicit representationwith a voxel octree that allows for empty-space skipping and
improves inference speeds by 10×. Follow-up works [122, 36, 41] further improve
rendering to interactive speeds by storing precomputed model outputs into auxil-
iary grid structures that bypass the need to query the original model altogether at
render time. Plenoxels [86] and DVGO [90] accelerate both training and rendering
by directly optimizing a voxel grid instead of anMLP to train inminutes or even sec-
onds. TensoRF [16] and K-Planes [28] instead use the product of low-rank tensors
to approximate the voxel grid and reduce memory usage, while Instant-NGP [66]
(iNGP) encodes features into a multi-resolution hash table. The main goal of our
work is to combine the speed benefits of grid-basedmethods with an approach that
maintains quality across different rendering scales.

Divide-and-conquer. Several works note the diminishing returns in using large
networks to represent scene content, and instead render the area of interest with
multiple smaller models. DeRF [77] and KiloNeRF [78] focus on inference speed
while Mega-NeRF (Chapter 2), Block-NeRF [91], and SUDS (Chapter 3) use scene
decomposition to efficiently train city-scale neural representations. Our method is
similar in philosophy, although we partition across different resolutions instead of
geographical area.

Aliasing. The original NeRF assumes that scene content is captured at roughly
equidistant camera distances and emits blurry renderings when the assumption is

43

violated. Mip-NeRF [10] reasons about the volume covered by each camera ray
and proposes an integrated positional encoding that alleviates aliasing. Mip-NeRF
360 [11] extends the base method to unbounded scenes. Exact-NeRF [43] derives
a more precise integration formula that better reconstructs far-away scene content.
Bungee-NeRF [113] leverages Mip-NeRF and further adopts a coarse-to-fine train-
ing approachwith residual blocks to train on large-scale sceneswith viewpoint vari-
ation. LIRF [114] proposes a multiscale image-based representation that can gener-
alize across scenes. The methods all build upon the original NeRF MLP model and
do not readily translate to accelerated grid-based methods.

Concurrent work. Several contemporary efforts explore the intersection of anti-
aliasing and fast rendering. Zip-NeRF [12] combines a hash table representation
with a multi-sampling method that approximates the true integral of features con-
tained within each camera ray’s view frustum. Although it trains faster than Mip-
NeRF, it is explicitly not designed for fast rendering as the multi-sampling adds
significant overhead. Mip-VoG [42] downsamples and blurs a voxel grid accord-
ing to the volume of each sample in world coordinates. We compare their reported
numbers to ours in Sec. 4.4.2.

Classical methods. Similar to PyNeRF, classic image processing methods, such
as Gaussian [5] and Laplacian [13] hierarchy, maintain a coarse-to-fine pyramid of
different images at different resolutions. Compared to Mip-NeRF, which attempts
to learn a singleMLPmodel across all scales, one could argue that ourwork demon-
strates that the classic pyramid approach can be efficiently adapted to neural volu-
metric models. In addition, our ray sampling method is similar to Crassin et al.’s
approach [21], which approximates cone tracing by sampling along camera rays
and querying different mipmap levels according the spatial footprint of each sam-
ple (stored as a voxel octree in their approach and as a NeRF model in ours).

4.3 Approach

4.3.1 Preliminaries

NeRF.NeRF [64] represents a scene within a continuous volumetric radiance field
that captures geometry and view-dependent appearance. It encodes the scene
within the weights of a multilayer perceptron (MLP). At render time, NeRF casts a
camera ray r for each image pixel. NeRF samples multiple positions xi along each
ray and queries the MLP at each position (along with the ray viewing direction
d) to obtain density and color values σi and ci. To better capture high-frequency
details, NeRF maps xi and d through an L-dimensional positional encoding (PE)
γ(x) = [sin(20πx), cos(20πx), . . . , sin(2Lπx), cos(2Lπx)] instead of directly using
them asMLP inputs. It then composites a single color prediction Ĉ(r) per ray using
numerical quadrature ∑N−1

i=0 Ti(1 − exp(−σiδi)) ci, where Ti = exp(−
∑i−1

j=0 σjδj)
and δi is the distance between samples. The training process optimizes themodel by

44

(a) Point Sampling

(c8, σ8) = f8(x,d)

(c9, σ9) = f9(x,d)

(b) Model Evalu-
ation

c = 0.4c8+0.6c9
σ =

0.4σ8 + 0.6σ9

(c) Interpolation

Figure 4.3: Overview. (a)We sample frustums along the camera ray corresponding
to each pixel and derive the scale of each sample according to its width in world
coordinates. (b) We query the model heads closest to the scale of each sample. (c)
We derive a single color and density value for each sample by interpolating between
model outputs according to scale.

sampling batchesR of image pixels and minimizing the loss∑r∈R∥C(r)− Ĉ(r)∥2.
We refer the reader to mildenhall2020nerf for details.

Anti-aliasing. The original NeRF suffers from aliasing artifacts when recon-
structing scene content observed at different distances or resolutions due to its re-
liance on point-sampled features. As these features ignore the volume viewed by
each ray, different cameras viewing the same position from different distances may
produce the same ambiguous feature. Mip-NeRF [10] and variants instead rea-
son about volumes by defining a 3D conical frustum per camera pixel. It featurizes
intervals within the frustum with a integrated positional encoding (IPE) that ap-
proximates each frustum as a multivariate Gaussian to estimate the integral E[γ(x)]
over the PEs of the coordinates within it.

Grid-based acceleration. Various methods [86, 66, 90, 16, 28] eschew NeRF’s
positional encoding and instead store learned features into a grid-based structure,
e.g. implemented as an explicit voxel grid, hash table, or a collection of low-rank ten-
sors. The features are interpolated based on the position of each sample and then
passed into a hard-coded function or much smaller MLP to produce density and
color, thereby accelerating training and rendering by orders of magnitude. How-
ever, these approaches all use the same volume-insensitive point sampling of the
original NeRF and do not have a straightforward analogy to Mip-NeRF’s IPE as
they no longer use positional encoding.

4.3.2 Multiscale sampling

Assume that each sample x (where we drop the i index to reduce notational clut-
ter) is associated with an integration volume. Intuitively, samples close to a camera
correspond to small volumes, while samples far away from a camera correspond

45

to large volumes (Fig. 4.3). Our crucial insight for enabling multiscale sampling
with grid-based approaches is remarkably simple: we train separate NeRFs at differ-
ent voxel resolutions and simply use coarser NeRFs for samples covering larger volumes.
Specifically, we define a hierarchy of L resolutions that divide the world into voxels
of length 1/N0, ..., 1/NL−1, where Nl+1 = sNl and s is a constant scaling factor. We
also define a function fl(x,d) at each level that maps from sample location x and
viewing direction d to color c and density σ. fl can be implemented by any grid-
based NeRF; in our experiments, we use a hash table followed by small density and
color MLPs, similar to iNGP. We further define a mapping functionM that assigns
the integration volume of sample x to the hierarchy level l. We explore different
alternatives, but find that selecting the level whose voxels project to the 2D pixel
area P (x) used to define the integration volume works well:

M(P (x)) = logs(P (x)/N0) (4.1)
l = min(L− 1,max(0,M(P (x)))) (4.2)
σ, c = fl(x,d), [GaussPyNeRF] (4.3)

where · is the ceiling function. Such a model can be seen as a (Gaussian) pyramid
of spatial grid-based NeRFs (Fig. 4.2). If the final density and color were obtained
by summing across different pyramid levels, the resulting levels would learn to spe-
cialize to residual or “band-pass” frequencies (as in a 3D Laplacian pyramid [13]):

σ, c =
l∑

i=0

fi(x,d). [LaplacianPyNeRF] (4.4)

Our experiments show that such a representation is performant, but expensive since
it requires l model evaluations per sample. Instead, we find a good tradeoff is to
linearly interpolate between two model evaluations at the levels just larger than
and smaller than the target integration volume:
σ, c = wfl(x,d) + (1− w)fl−1(x,d), where w = l −M(P (x)). (Default) [PyNeRF]

(4.5)
This adds the cost of only a single additional evaluation (increasing the over-

all rendering time from 0.0045 to 0.005 ms per pixel) while maintaining rendering
quality (see Sec. 4.4.6). Our algorithm is summarized in Algorithm 1.

Matching areas vs volumes. One might suspect it may be better to select the
voxel level l whose volume best matches the sample’s 3D integration volume. We
experimented with this, but found it more effective to match the projected 2D pixel
area rather than volumes. Note that both approaches would produce identical re-
sults if the 3D volume was always a cube, but volumes may be elongated along the
ray depending on the sampling pattern. Matching areas is preferable because most
visible 3D scenes consist of empty space and surfaces, implying that when comput-
ing the composite color for a ray r, most of the contribution will come from a few

46

Require: m rays r, L pyramid levels, hierarchy mapping function M , base resolu-
tion N0, scaling factor s

Ensure: m estimated colors c
x,d, P (x)← sample(r) ▷ Sample points x along each ray with direction d and
area P (x)
M(P (x))← logs(P (x)/N0) ▷ eq. (4.1)
l← min(L− 1,max(0,M(P (x)))) ▷ eq. (4.2)
w ← l −M(P (x)) ▷ eq. (4.5)
model out← zeros(len(x)) ▷ Zero-initialize model outputs for each sample x
for i in unique(l) do ▷ Iterate over sample levels

model out[l = i] += w[l = i]fi(x[l = i],d[l = i])
model out[l = i] += (1− w)[l = i]fi−1(x[l = i],d[l = i])

end for
c← composite(model out) ▷ Composite model outputs into per-ray color c
return c

Algorithm 1: PyNeRF rendering function

samples x lying near the surface of intersection. When considering the target 3D
integration volume associated with x, most of the contribution to the final compos-
ite color will come from integrating along the 2D surface (since the rest of the 3D
volume is either empty or hidden). This loosely suggests we should select levels of
the voxel hierarchy based on (projected) area rather than volume.

Multi-resolution pixel input. One added benefit of the above is that one can
train with multiscale training data, which is particularly helpful for learning large,
city-scale NeRFs [100, 91, 113, 101, 115]. For such scenarios, even storing high-
resolution pixel imagery may be cumbersome. In our formulation, one can store
low-resolution images and quickly train a coarse scene representation. The benefits
are multiple. Firstly, divide-and-conquer approaches such as Mega-NeRF (Chap-
ter 2) partition large scenes into smaller cells and train using different training
pixel/ray subsets for each (to avoid training on irrelevant data). However, in the
absence of depth sensors or a priori 3D scene knowledge, Mega-NeRF is limited in
its ability to prune irrelevant pixels/rays (due to intervening occluders) which em-
pirically bloat the size of each training partition by 2×. With our approach, we can
learn a coarse 3D knowledge of the scene on downsampled images and then filter
higher-resolution data partitions more efficiently. Once trained, lower-resolution
levels can also serve as an efficient initialization for finer layers. In addition, many
contemporary NeRF methods use occupancy grids or proposal networks to gener-
ate refined samples near surfaces. We can quickly train these along with our ini-
tial low-resolution model and then use them to train higher-resolution levels in a
sample-efficientmanner. We show in our experiments that such course-to-finemul-
tiscale training can speed up convergence (Sec. 4.4.4).

47

4.3.3 Space efficiency

A downside of our method is an increased serialization footprint due to training a
hierarchy of spatial grid NeRFs. We describe several mitigations and measure their
impact in Sec. 4.4.5:

Saving memory on coarser levels. The learned feature grids used in fast NeRF
methods usually comprise the bulk of their memory footprint. In the case of
iNGP [66] (which we use as the backbone model in our experiments), the feature
grid is stored as a multi-resolution hash table. One possible optimization is to use
smaller hash tables for lower-resolution levels. Assume that Sl is the hash table size
of the finest-resolution level l. By setting Sl−1 = Sl/2, we can reduce the overall
storage cost of our pyramid from lSl (when each level has the same capacity) to
less than 2Sl.

Space-efficient grid implementations. Storing features in an explicit voxel
grid is expensive at high resolutions as the space complexity is O(n3) for spatial
scenes and O(n4) spatio-temporal scenes. iNGP [66] instead uses hash tables
that are smaller that the explicit grids. As an alternative, TensoRF [16] uses
CANDECOMP/PARAFAC (CP) [15] or Vector-Matrix (VM) decomposition to
store features in a highly space-efficient manner. We test both decomposition
methods as alternatives to our default hash table encoding.

Existing grid hierarchy. Note that multi-resolution grids such as those used by
iNGP [66] or K-Planes [28] already define a scale hierarchy that is a natural fit for
SUDS. Rather than learning a separate feature grid for each model in our pyramid,
we can reuse the same multi-resolution features across levels (while still training
different MLP heads).

4.4 Experiments

We first evaluate PyNeRF’s performance bymeasuring its reconstruction quality on
bounded synthetic (Sec. 4.4.2) and unbounded real-world (Sec. 4.4.3) scenes. We
then explore the convergence benefits of using multiscale training data in city-scale
reconstruction scenarios (Sec. 4.4.4) and space efficiency strategies (Sec. 4.4.5). We
finally ablate our design decisions in Sec. 4.4.6.

4.4.1 Experimental Setup

Training. We implement PyNeRF on top of the Nerfstudio library [93] and train on
each scene for 20,000 iterations with 8,192 rays per batch. We sample rays using an
occupancy grid as proposed by iNGP [66] on the Multiscale Blender dataset, and
with a proposal sampling method similar to Mip-NeRF 360 [11] on all others. We
parameterize unbounded scenes withMip-NeRF 360’s contraction method. We use
Adam [49] with a learning rate of 10−2 that is cosine decayed to 5× 10−4.

48

Table 4.1: Synthetic results. PyNeRF outperforms all baselines and trains over 60×
faster than Mip-NeRF. Both PyNeRF and Mip-NeRF properly reconstruct the brick
wall in the Blender-A dataset, butMip-NeRF fails to accurately reconstruct checker-
board patterns.

Multiscale Blender [10] Blender-A
↑PSNR ↑SSIM ↓LPIPS ↓Avg Error ↓Train Time (h) ↑PSNR ↑SSIM ↓LPIPS ↓Avg Error ↓ Train Time (h)

Plenoxels [86] 24.98 0.843 0.161 0.080 0:28 18.13 0.511 0.523 0.190 0:20
K-Planes [28] 29.88 0.946 0.058 0.022 0:32 18.55 0.368 0.641 0.251 0:38
TensoRF [16] 30.51 0.957 0.038 0.017 0:27 25.33 0.730 0.265 0.070 0:32
iNGP [66] 30.21 0.958 0.040 0.022 0:20 20.85 0.767 0.244 0.089 0:29
Mip-VoG [42] 30.42 0.954 0.053 — — — — — — —
Mip-NeRF [10] 34.50 0.974 0.017 0.009 29:49 31.33 0.894 0.098 0.063 30:12
PyNeRF 34.57 0.976 0.013 0.008 0:25 40.14 0.989 0.013 0.006 0:29

Metrics. We report quantitative results based on PSNR, SSIM [106], and the
AlexNet implementation of LPIPS [127], along with the training time in hours as
measured on a single A100 GPU. For ease of comparison, we also report the “aver-
age” error metric proposed by Mip-NeRF [10] composed of the geometric mean of
MSE = 10−PSNR/10,√1− SSIM, and LPIPS.

4.4.2 Synthetic Reconstruction

Datasets. We evaluate PyNeRF on the Multiscale Blender dataset proposed by
Mip-NeRF along with our own Blender scenes (which we name “Blender-A”) in-
tended to further probe the anti-aliasing ability of our approach (by reconstructing
a slanted checkerboard and zooming into a brick wall). We encourage reviewers to
view our supplementary videos and will release our dataset upon acceptance.

Baselines. We compare PyNeRF to several fast-rendering approaches, namely
Instant-NGP [66], Plenoxels [86] which optimizes an explicit voxel grid, and Ten-
soRF [16] and K-Planes [28], which rely on low-rank tensor decomposition. We
also compare our Multiscale Blender results to those reported by Mip-VoG [42], a
contemporary fast anti-aliasing approach, and to Mip-NeRF [10] on both datasets.

Results. We summarize our results in Tab. 4.1 and show qualitative examples
in Fig. 4.4. PyNeRF outperforms all fast rendering approaches as well as Mip-VoG
by a wide margin and is slightly better thanMip-NeRF onMultiscale Blender while
training over 60× faster. Both PyNeRF andMip-NeRF properly reconstruct the brick
wall in the Blender-A dataset, butMip-NeRF fails to accurately reconstruct checker-
board patterns.

4.4.3 Real-World Reconstruction

Datasets. We evaluate PyNeRF on the Boat scene of the ADOP [84] dataset, which
to our knowledge is one of the only publicly available unbounded real-world cap-
tures that captures its primary object of interest from different camera distances.

49

Plenoxels, 30 FPS
M

ic
K-Planes, 25 FPS iNGP, 40 FPS Mip-NeRF, 0.1 FPS PyNeRF (Ours), 33 FPS Ground Truth

Sh
ip

Br
ick

Ch
ec

ke
rb

oa
rd

Figure 4.4: Synthetic results. PyNeRF and Mip-NeRF provide comparable results
on the first three scenes that are crisper than those of the other fast renderers. Mip-
NeRF does not accurately render the tiles in the last row while PyNeRF recreates
them near-perfectly.

For further comparison, we construct a multiscale version of the outdoor scenes in
the Mip-NeRF 360 [11] dataset using the same protocol as Multiscale Blender [10].

Baselines. We compare PyNeRF to the same fast-rendering approaches as in
Sec. 4.4.2, along with two unbounded Mip-NeRF variants: Mip-NeRF 360 [11] and
Exact-NeRF [43]. We report numbers on each variant with and without generative
latent optimization [61] to account for lighting changes.

Results. We summarize our results in Tab. 4.2 along with qualitative results
in Fig. 4.5. Once again, PyNeRF outperforms all baselines, trains 40× faster than
Mip-NeRF 360, and 110× faster than Exact-NeRF (the next best alternatives).

4.4.4 City-Scale Convergence

Dataset. We evaluate PyNeRF’s convergence properties on the the Argoverse
2 [110] Sensor dataset (to our knowledge, the largest city-scale dataset available).
We select the largest overlapping subset of logs and filter out moving objects
through a pretrained segmentation model [18]. The resulting training set contains
400 billion rays across 150K video frames.

50

Plenoxels, 3 FPS
Bi

cy
cle

K-Planes, 3 FPS iNGP, 4 FPS Mip-NeRF 360, 0.04 FPS PyNeRF (Ours), 4 FPS Ground Truth
Bo

at

Figure 4.5: Real-world results. PyNeRF reconstructs higher-fidelity details (such
as the spokes on the bicycle and the lettering within the boat) than other methods.

Table 4.2: Real-world results. PyNeRF outperforms all baselines in PSNR and aver-
age error, and trains 40× faster thanMip-NeRF 360 and 110× faster than Exact-NeRF
(the next best methods).

Boat [84] Mip-NeRF 360 [11]
↑PSNR ↑SSIM ↓LPIPS ↓Avg Error ↓Train Time (h) ↑PSNR ↑SSIM ↓LPIPS ↓Avg Error ↓ Train Time (h)

Plenoxels [86] 17.05 0.505 0.617 0.185 1:23 21.88 0.606 0.524 0.117 1:00
K-Planes [28] 18.00 0.501 0.590 0.168 1:09 21.62 0.572 0.519 0.121 1:08
TensoRF [16] 14.75 0.398 0.630 0.234 1:05 14.75 0.368 0.742 0.248 1:07
iNGP [66] 15.34 0.433 0.646 0.222 0:36 21.14 0.568 0.521 0.126 0:40
Mip-NeRF 360 w/ GLO [11] 20.03 0.595 0.416 0.124 37:28 22.00 0.615 0.400 0.108 37:35
Mip-NeRF 360 w/o GLO [11] 15.92 0.480 0.501 0.194 37:10 21.74 0.612 0.403 0.110 37:22
Exact-NeRF w/ GLO [43] 20.21 0.601 0.425 0.123 109:11 22.03 0.626 0.398 0.106 110:06
Exact-NeRF w/o GLO [43] 16.33 0.489 0.510 0.187 107:52 21.48 0.620 0.418 0.121 108:11
PyNeRF 21.07 0.586 0.454 0.118 0:57 22.61 0.635 0.399 0.102 1:00

Methods. Weuse SUDS (Chapter 3) as the backbonemodel in our experiments.
We begin training our method on 8× downsampled images (containing 64× fewer
rays) for 5,000 iterations and then on progressively higher resolutions (downsam-
pled to 4×, 2×, and 1×) every 5,000 iterations hereafter. We compare to the original
SUDS method as a baseline.

Metrics. We report the evolution of the quality metrics used in Sec. 4.4.2 and
Sec. 4.4.3 over the first four hours of the training process.

Results. We summarize our results in Tab. 4.3. PyNeRF converges more rapidly
than the SUDS baseline, achieving the same rendering quality at 2 hours as SUDS
after 4.

4.4.5 Space Efficiency

We measure the perceptual quality and memory footprint of the strategies defined
in Sec. 4.3.3 across the datasets defined in Sec. 4.4.2 and Sec. 4.4.3 and compare to
our default SUDSmethod and the base TensoRF-CP, TensoRF-VM, and iNGP imple-
mentations. We summarize our results in Tab. 4.4. Using smaller tables for coarser

51

Table 4.3: City-scale convergence. We track rendering quality over the first four
hours of training. PyNeRF achieves the same rendering quality as SUDS 2× faster.

↑ PSNR

Time (h) 1:00 2:00 3:00 4:00
SUDS (Chapter 3) 16.01 17.41 18.08 18.53
PyNeRF 17.17 18.44 18.59 18.73

↑ SSIM

Time (h) 1:00 2:00 3:00 4:00
SUDS (Chapter 3) 0.570 0.600 0.602 0.606
PyNeRF 0.614 0.618 0.619 0.621

↓ LPIPS

Time (h) 1:00 2:00 3:00 4:00
SUDS (Chapter 3) 0.531 0.496 0.470 0.466
PyNeRF 0.521 0.485 0.469 0.465

↓ Avg Error

Time (h) 1:00 2:00 3:00 4:00
SUDS (Chapter 3) 0.182 0.160 0.150 0.145
PyNeRF 0.165 0.146 0.144 0.142

levels reduces the overall model size by over 2× but comes at a 0.5 db cost in PSNR.
Sharing the feature grid across levels reduces the overall size even further (by 4×)
without a noticeable degradation in quality. Using TensoRF instead of iNGP hash
tables also reduces disk space, especially with CP decomposition (300× reduction)
although this is offset by a significant decrease in quality. All PyNeRF implemen-
tations perform significantly better than their base models.

4.4.6 Diagnostics

Methods. We validate our design decisions by testing several variants. We ablate
ourMLP-level interpolation described in eq. (4.5) and compare it to theGausssPyN-
eRF and LaplacianPyNeRF variants described in Sec. 4.3.2 along with another that
instead interpolates the learned grid feature vectors (which avoids the need for an
additional MLP evaluation per sample). We also explore using 3D sample volumes
instead of projected 2D pixel areas to determine voxel levels l, and using super-
sampling instead of model partitioning altogether.

Results. We train our method and variants as described in Sec. 4.4.2 and
Sec. 4.4.3, and summarize the results (averaged across datasets) in Tab. 4.5.
Our proposed interpolation method strikes a good balance — its performance
is near-identical to the full LaplacianPyNeRF approach while training 3× faster

52

Table 4.4: Space Efficiency. Using smaller tables for coarser levels or sharing the
feature grid across hierarchy levels both decrease model size, with the latter strat-
egy resulting in no apparent degradation in quality. Using TensoRF as the backbone
instead of iNGP also reduces model size but reduces quality significantly. All PyN-
eRF implementations perform better than the base models.

Strategy ↑PSNR ↑SSIM ↓LPIPS ↓Avg Error ↓Model Size (MB)
SUDS - smaller coarse tables 29.06 0.773 0.236 0.068 410
SUDS - TensoRF-CP 22.19 0.591 0.524 0.141 3
SUDS - TensoRF-VM 23.88 0.642 0.412 0.118 531
SUDS - shared iNGP table 29.49 0.778 0.230 0.066 222
TensoRF-CP [16] 21.63 0.580 0.529 0.150 0.4
TensoRF-VM [16] 22.81 0.588 0.461 0.132 67
iNGP [66] 23.96 0.697 0.354 0.096 214
SUDS 29.49 0.780 0.233 0.066 912

Table 4.5: Diagnostics. The rendering quality of our interpolation method is near-
identical to the full residual approach while training 3× faster, and significantly
better than other alternatives.

Ablation ↑PSNR ↑SSIM ↓LPIPS ↓Avg Error ↓ Training Time (h)
GaussPyNeRF (Eq. 4.3) 28.69 0.761 0.248 0.071 0:47
LaplacianPyNeRF (Eq. 4.4) 29.51 0.780 0.230 0.065 2:44
Feature grid interpolation 28.67 0.767 0.244 0.070 0:49
Levels w/ 3D Volumes 28.97 0.767 0.243 0.072 0:53
Super-sampling (8×) 24.62 0.680 0.332 0.103 5:36
PyNeRF 29.49 0.780 0.233 0.066 0:52

while providing a 1dB improvement in PSNR relative to the other strategies and
adding only a small overhead in training time. Using 2D pixel areas instead of
3D volumes to determine voxel level l provides a meaningful improvement. The
super-sampling approach performs worst across all metrics.

4.5 Discussion

We propose amethod that significantly improves the anti-aliasing properties of fast
volumetric renderers. Our approach can be easily applied to any existing NeRF
representation, and although simple, provides state-of-the-art reconstruction re-
sults against a wide variety of datasets (while training 60–110× faster than existing
anti-aliasing methods). We propose several synthetic scenes that model common
aliasing patterns as few existing NeRF datasets cover these scenarios in practice.
Creating and sharing additional real-world captures would likely facilitate further
research.

53

4.5.1 Limitations

A limitation of our method is that performance will degrade when zooming in and
out of areas that have not been seen at training time. “Zoom-out” (rendering far-
away views) can be handled by simulating far-away views during training by sim-
ply adding downsampled training images. “Zoom-in” (rendering nearby views)
is fundamentally challenging since one cannot easily simulate such views without
hallucination-based methods such as super-resolution. Instead, we can force ren-
derings to query only the finest level that was supervised at train-time (by main-
taining an occupancy grid-like data structure), which results in the same blurry
artifacts or typical NeRF approaches.

4.5.2 Societal Impact

Ourmethod facilitates the rapid construction of high-quality neural representations
in a resource efficient manner. As such, the risks inherent to our work is simi-
lar to those of other neural rendering papers, namely privacy and security con-
cerns related to the intentional or inadvertent capture or privacy-sensitive infor-
mation such as human faces and vehicle license plate numbers. Many recent ap-
proaches [128, 51, 99, 101, 48] distill semantics into NeRF’s representation, which
may be used to filter out sensitive information at render time. However this infor-
mation would still reside in the model itself. This could in turn be mitigated by
preprocessing the input data used to train the model [103].

54

Chapter 5

Proposed Work: Fast Rendering
via Hybrid Surface-Volume
Representations

5.1 Introduction

Interactivity is essential to large-scale rendering as it is impossible to pre-compute
all possible viewpoints of interest beforehand. Many existing approaches bake a
trained NeRF into a finite-resolution structure. As mentioned in Chapter 2, these
scale poorly against large scale scenes and either render low-quality views when
zoomed in or have prohibitivememory requirements. Othermethods try to directly
accelerate volumetric rendering, but either do not meet the real-time requirements
of VR applications (60 FPS at 2K resolution) or come with quality tradeoffs.

Our approach to this problem is simple - although NeRF is a volumetric repre-
sentation, most of the world is composed of surfaces. Therefore, our model should
be able to render most of the world with few samples. However, as NeRF is volu-
metric, it has the freedom to arbitrarily allocate density behind apparent surfaces.
As an example, it often “cheats” when modeling difficult-to-model effects such as
wall reflections by assigning density behind these effects. The raymarching process
therefore then samples many times per ray, requiring many model evaluations.

Recent recent surface reconstruction methods [119, 104] adopt a hybrid
volumetric-hybrid approach that begin by training a volumetric model (as in
NeRF), but gradually encourage the model to behave as much like an SDF as
possible. We believe that they can help accelerate neural rendering through two
insights. First, as these methods encourage the model to bias towards surfaces,
they are more compact than pure NeRF approaches. Second, as these methods
derive density as a function of distance from surfaces, we are able to derive efficient
sampling bounds in a mathematically robust manner. When combined, these two
insights promise to greatly accelerate NeRF rendering while maintaining rendering

55

quality.

5.2 Related work

We summarize a non-exhaustive list of approaches relevant to our work:
Voxel baking. Some of the earliest NeRF acceleration methods store precom-

puted non-view dependent model outputs into a finite-resolution structures such
as voxel octrees [122, 41, 36]. They bypass the original model entirely at render
time by computing the final view-dependent radiance using a much smaller MLP
or spherical harmonics. As shown in Chapter 2, although they achieve interactiv-
ity, they suffer from the finite capacity of the caching structure and cannot capture
low-level details at scale.

Feature grids. Recent methods use a hybrid approach that combine a learned
feature grid with a much smaller MLP than the original NeRF [16, 28, 66]. Instant-
NGP [66] (iNGP), arguably the most popular of these methods, encodes features
into a multi-resolution hash table. Although these hybrid representations speed
up rendering dramatically, they cannot reach the level needed for truly interac-
tive rendering alone, as even iNGP reaches only 5 FPS on Tanks and Temples [54].
MERF [79] comes closest through a baking pipeline that makes use of various sam-
pling and memory layout optimizations. We use several of their optimizations in
our implementation.

Meshes. Recent approaches [120, 39] train a surface representation similar to
ours but then bake it into a mesh structure that handles view-dependence appear-
ances. This mesh is further optimized and simplified, which introduces significant
complexity to the training pipeline. Mobile-NeRF [17] alternatively represents the
scene as a triangle mesh textured by deep features. Similar to earlier voxel-based
approaches, these methods bypass the original model entirely at render time and
suffer from the same finite-resolution shortfalls. Furthermore, they struggle to han-
dle transparency and view-dependent effects, which are especially noticeable at VR
resolution.

Sample efficiency. Several approaches [67, 73, 53, 11] accelerate rendering by
intelligently placing far fewer samples along each ray than the original hierarchical
sampling. These methods all train auxiliary networks that are cheaper to evaluate
than the base model. However, as they are based on purely volumetric representa-
tions, they are limited in practice as to how few samples they can use per ray with-
out degrading quality, and therefore exhibit a worse quality-performance tradeoff
curve than our proposed approach.

Gaussian Splatting. 3D Gaussian splatting [47] has most recently emerged as
the new state-of-the-art approach pushing the frontier of rendering speed and qual-
ity. This approach optimizes a discrete set of 3D gaussians through NeRF’s volume
rendering equation and achieves high visual quality while rendering at over 100 fps

56

at 1080p resolution. While impressive, the number of Gaussians needed to repre-
sent high-resolution or city-scale scenes remains an open question.

5.3 Method

The goal of our method is to first train a continuous neural representation that de-
fines surfaces as compactly as possible while maintaining the ability to model fine
structures and transparent effects (Sec. 5.3.1). We then discuss how to efficiently
query the trained representation (Sec. 5.3.2).

5.3.1 Training

Preliminaries. Our model combines the acceleration benefits of grid-based ap-
proaches [66] with the properties of surface representations [119, 104]. We refer
the reader to Chapters 3 and 4 for an overview of grid-based methods and use the
same denisty parameterization as VolSDF [119] by training a signed distance func-
tion f(x) such that the underlying surface of the scene is the zero-level set of f :

S = {x : f(x) = 0} . (5.1)
We render the scene using NeRF volumetric rendering by defining volume den-

sity τ(x) and opacity σ(x) as:

τ(x) =
1

β
Ψβ(f(x)) (5.2)

σ(x) = 1− e−τ(x)t, (5.3)

where t is the distance between ray samples and Ψβ is the CDF of a zero-mean
Laplace distribution with scale parameter β > 0:

Ψβ(s) =

{
1
2 exp(

−s
β) if s > 0

1− 1
2 exp(

s
β) if s ≤ 0

(5.4)

We encourage f(x) to behave as a valid signed function by regularizing with the
Eikonal loss term:

Leikonal = Ex[(∥∇f(x)∥ − 1)2] . (5.5)
Surface parameterization. Prior work treats β as a scene-wide hyperparameter

that is either trainable or explicitly scheduled during the training process. Note that
as β approaches 0, the volumetric density converges towards an indicator function
that returns 1

β inside any object and 0 in free space (Fig. 5.2). We therefore wish for

57

 = 200 (20 samples / ray) = 400 (14 samples / ray)

 = 800 (10 samples / ray) = 1600 (4 samples / ray)

Figure 5.1: Surfaces. We render VolSDF [119] using different values of α = 1
β . It

exhibits SDF-like behavior as α increases, reducing the number of required samples
per ray. However, setting this scene-wide hyperparameter too aggressively hinders
the model’s ability to reconstruct fine details.

β to be as low as possible to improve sample efficiency. However, setting this pa-
rameter too aggressively reduces rendering quality and hinders the model’s ability
to capture fine geometry (Fig. 5.1).

Solutions such as VMesh [39] train entirely separate volumetric and surface-
based networks that are alpha-composited to render a single pointwise color pre-
diction. Although this allows for more accurate rendering of fine details, it requires
sampling two separate networks, potentially increasing train and render times by
2x. We propose an alternate solution where our network predicts per-location β
in addition to signed distance. This gives our model the freedom to model diffi-
cult surfaces in a less constrained manner than previous surface-based approaches
while maintaining their otherwise desirable compactness properties.

5.3.2 Rendering

Occupancy grid. Once trained, our aim is to render as efficiently as possible and
therefore avoid needlessly querying low-density space. Similar to MERF [79], we
use a proposal network during training which we bake into a hierarchical occu-

58

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
-Distance (s)

0.0

0.2

0.4

0.6

0.8

1.0

Op
ac

ity

=10
=20
=40
=80

Figure 5.2: Distance to Density. We plot opacity as a function of surface distance
using different values for α = 1

β . As β decreases, the volumetric density converges
towards an indicator function that returns 1

β inside any object and 0 in free space.

pancy grid containing only part of the scene with opacity values above a defined
threshold σc. We use the same piecewise-projective contraction method and empty
space skipping to query the occupancy grids as efficiently as possible.

Surface-guided sampling. After reaching an occupied voxel, sampling within
the voxel remains an open question. Existing approaches use a constant or expo-
nentially increasing step size that must be carefully tuned to avoid aliasing artifacts
or excessive model queries. However, as we model density as a function of signed
distance, we can directly predict where to next sample along the ray. For a given
opacity threshold σc, fixed render step size t, and existing ray samplewith predicted
distance s, one need simply predict the next sample distance d such as the predicted
surface distance s− d remains above the opacity threshold:

αΨβ(s− d) = − log(1− σc)

t
, . (5.6)

Note that although this methodworks well for most surfaces, it fails to converge
near discontinuities (5-10% in our experiments). We therefore track convergence
and fall back to standard volumetric rendering if convergence does not improve
after a fixed number of iterations.

59

5.4 Evaluation

We plan to evaluate our method against a soon-to-be-released dataset of indoor
scenes captured in HDR at 4K resolution. Each scene contains 1,000-2,000 images
with complex view-dependent effects. We will compare our method against exist-
ing state-of-the-art methods including a baked mesh baseline, 3D Gaussian Splat-
ting [47], and Instant NGP [66].

60

Chapter 6

Proposed Work: Generative
Models for Urban Scene
Completion

6.1 Introduction

NeRF can generate highly photorealistic renderings of camera viewpoints close to
training poses but generalize poorly to larger viewpoint changes. The problem is
especially acute in dynamic 4D settings such as that described in Chapter 3 where
the training data captures only a subset of the scene at any given time step. In the
case of moving objects, wemight only view the object of interest from a single view-
point (such as the back of a car). The ability to generate plausible renderings of the
entire object would greatly enhance use cases such as re-simulation for autonomous
driving along more immersive general free viewpoint rendering.

Various approaches improve NeRF’s extrapolation capabilities through hand-

?

Figure 6.1: Moving objects. Moving objects are especially challenging to render
plausibly when seen from a limited set of training viewpoints.

61

crafted or data-driven priors. Reg-NeRF [68] regularizes geometry and appear-
ance of patches rendered from unobserved viewpoints and an annealed ray sam-
pling strategy to prevent divergence during training. Manhattan SDF [38] uses a
pretrained segmentation network along with Manhattan-world assumption to reg-
ularize the geometry of floor and wall regions. PixelNeRF [121] conditions NeRF
on image inputs using convolutional features. GANeRF [83] uses an adversarial
discriminator to generate sharper renderings and remove floater artifacts in under-
observed areas.

Most recently, Tewari et al [96], SparseFusion [129], andDiffRF [65], all propose
combining denoising diffusion models with a 3D neural representation to generate
plausible view-consistent renderings from sparse views. Although results are en-
couraging, they are solely evaluated on static, single-object scenes. We aim to extend
their work to less constrained urban settings.

As a tractable starting point, we propose a compositional scene representation
similar to that proposed by Neural Scene Graphs [70] where the background and
each foreground object is modeled with a separate NeRF/diffusion model pairing.
Assuming that the background is constant, can we generate plausible renderings
of a given object at an arbitrary timestep and viewpoint? Rigid, symmetrical ob-
jects such as vehicles will likely be easier to model than deformable pedestrians.
Assuming the initial experiment is successful, our next goal would be to derive a
suitable model representation and training strategy for city-scale scenes, as repre-
senting each object with a separate NeRF is infeasible. Learning category-specific
codes and model distillation are possible solutions.

62

Chapter 7

Thesis Timeline

Fall - Winter 2023 (September 2023 - January 2024): Fast Rendering via Hybrid
Surface-Volume Representations
Spring 2024 (February - May 2024): Generative Models for Urban Scene Comple-
tion
Summer 2024: Thesis Writing
September 2024: Thesis Defense

63

Bibliography

[1] Gen 3.6 search and rescue. https://www.faa.gov/air_traffic/publications/

atpubs/aip_html/part1_gen_section_3.6.html. Accessed: 2021-10-15. 4
[2] Kwea123’s nsff implementation. https://github.com/kwea123/nsff_pl. Accessed:

2022-10-29. 32
[3] Open3d oriented bounding box implementation. http://www.open3d.org/docs/

latest/python_api/open3d.geometry.OrientedBoundingBox.html#open3d.

geometry.OrientedBoundingBox.create_from_axis_aligned_bounding_box.
Accessed: 2022-11-06. 36

[4] Scikit incremental pca. https://scikit-learn.org/stable/modules/generated/
sklearn.decomposition.IncrementalPCA.html. Accessed: 2022-10-29. 34

[5] Edward Adelson, Charles Anderson, James Bergen, Peter Burt, and Joan Ogden.
Pyramid methods in image processing. RCA Eng., 29, 11 1983. 41, 44

[6] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless,
Steven M. Seitz, and Richard Szeliski. Building rome in a day. Commun. ACM,
54(10):105–112, oct 2011. 9

[7] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless,
Steven M Seitz, and Richard Szeliski. Building rome in a day. Communications of
the ACM, 54(10):105–112, 2011. 22

[8] Shir Amir, Yossi Gandelsman, Shai Bagon, and Tali Dekel. Deep vit features as dense
visual descriptors. arXiv preprint arXiv:2112.05814, 2021. 31, 34

[9] Dragomir Anguelov, Carole Dulong, Daniel Filip, Christian Frueh, Stéphane Lafon,
Richard Lyon, Abhijit Ogale, Luc Vincent, and JoshWeaver. Google street view: Cap-
turing the world at street level. Computer, 43(6):32–38, 2010. 22

[10] JonathanT. Barron, BenMildenhall,MatthewTancik, PeterHedman, RicardoMartin-
Brualla, and Pratul P. Srinivasan. Mip-NeRF: A multiscale representation for anti-
aliasing neural radiance fields. In ICCV, 2021. 41, 44, 45, 49, 50

[11] Jonathan T. Barron, BenMildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hed-
man. Mip-nerf 360: Unbounded anti-aliased neural radiance fields. In CVPR, 2022.
25, 34, 42, 44, 48, 50, 51, 56

[12] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hed-
man. Zip-NeRF: Anti-aliased grid-based neural radiance fields. In ICCV, 2023. 44

64

https://www.faa.gov/air_traffic/publications/atpubs/aip_html/part1_gen_section_3.6.html
https://www.faa.gov/air_traffic/publications/atpubs/aip_html/part1_gen_section_3.6.html
https://github.com/kwea123/nsff_pl
http://www.open3d.org/docs/latest/python_api/open3d.geometry.OrientedBoundingBox.html#open3d.geometry.OrientedBoundingBox.create_from_axis_aligned_bounding_box
http://www.open3d.org/docs/latest/python_api/open3d.geometry.OrientedBoundingBox.html#open3d.geometry.OrientedBoundingBox.create_from_axis_aligned_bounding_box
http://www.open3d.org/docs/latest/python_api/open3d.geometry.OrientedBoundingBox.html#open3d.geometry.OrientedBoundingBox.create_from_axis_aligned_bounding_box
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.IncrementalPCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.IncrementalPCA.html

[13] P. Burt and E. Adelson. The laplacian pyramid as a compact image code. IEEE Trans-
actions on Communications, 31(4):532–540, 1983. 44, 46

[14] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bo-
janowski, and Armand Joulin. Emerging properties in self-supervised vision trans-
formers. 2021. 26, 28

[15] J. Douglas Carroll and Jih Jie Chang. Analysis of individual differences in multi-
dimensional scaling via an n-way generalization of “eckart-young” decomposition.
Psychometrika, 35:283–319, 1970. 48

[16] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial
radiance fields. In ECCV, 2022. 26, 43, 45, 48, 49, 51, 53, 56

[17] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. Mo-
bilenerf: Exploiting the polygon rasterization pipeline for efficient neural field ren-
dering on mobile architectures. In CVPR, 2023. 56

[18] Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu, Thomas S Huang, Hartwig
Adam, and Liang-Chieh Chen. Panoptic-deeplab: A simple, strong, and fast baseline
for bottom-up panoptic segmentation. In CVPR, 2020. 50

[19] Shin-Fang Chng, Sameera Ramasinghe, Jamie Sherrah, and Simon Lucey. Gaussian
activated neural radiance fields for high fidelity reconstruction and pose estimation.
In ECCV, page 264–280, Berlin, Heidelberg, 2022. Springer-Verlag. 21

[20] David Crandall, Andrew Owens, Noah Snavely, and Daniel Huttenlocher. Discrete-
continuous optimization for large-scale structure from motion. In CVPR, 2011. 7,
13

[21] Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar Eisemann. In-
teractive indirect illumination using voxel cone tracing: A preview. In Symposium on
Interactive 3D Graphics and Games, 2011. 41, 44

[22] Tali Dekel, Shaul Oron, Michael Rubinstein, Shai Avidan, and William T. Freeman.
Best-buddies similarity for robust template matching. In CVPR, pages 2021–2029,
2015. 36

[23] Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ramanan. Depth-supervised
NeRF: Fewer views and faster training for free. In CVPR, June 2022. 26, 32

[24] YilunDu, Yinan Zhang, Hong-Xing Yu, Joshua B. Tenenbaum, and JiajunWu. Neural
radiance flow for 4d view synthesis and video processing. In ICCV, 2021. 21, 25, 30

[25] J. Eyerman, G. Crispino, A. Zamarro, and R Durscher. Drone efficacy study (DES):
Evaluating the impact of drones for locating lost persons in search and rescue events.
Brussels, Belgium: DJI and European Emergency Number Association, 2018. 4

[26] L-CCGP Florian and Schroff Hartwig Adam. Rethinking atrous convolution for se-
mantic image segmentation. In Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE/CVF, 2017. 14

[27] John Flynn, Michael Broxton, Paul Debevec, Matthew DuVall, Graham Fyffe, Ryan
Overbeck, Noah Snavely, and Richard Tucker. Deepview: View synthesis with
learned gradient descent. In CVPR, 2019. 14

65

[28] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht,
and Angjoo Kanazawa. K-planes: Explicit radiance fields in space, time, and appear-
ance. In CVPR, 2023. 43, 45, 48, 49, 51, 56

[29] Xiao Fu, Shangzhan Zhang, Tianrun Chen, Yichong Lu, Lanyun Zhu, Xiaowei Zhou,
Andreas Geiger, and Yiyi Liao. Panoptic nerf: 3d-to-2d label transfer for panoptic
urban scene segmentation. In International Conference on 3D Vision (3DV), 2022. 25

[30] Thomas A. Funkhouser and Carlo H. Séquin. Adaptive display algorithm for in-
teractive frame rates during visualization of complex virtual environments. In Pro-
ceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’93, page 247–254, NewYork, NY, USA, 1993. Association for Computing
Machinery. 9

[31] Thomas A Funkhouser, Carlo H Sequin, and Seth J Teller. Management of large
amounts of data in interactive building walkthroughs. In Proceedings of the 1992 sym-
posium on Interactive 3D graphics, pages 11–20, 1992. 30

[32] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. Virtual worlds as
proxy for multi-object tracking analysis. In CVPR, pages 4340–4349, 2016. 38

[33] Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang. Dynamic view synthesis
from dynamic monocular video. In ICCV, 2021. 21

[34] Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang. Dynamic view synthesis
from dynamic monocular video. In ICCV, 2021. 25, 27, 30, 32, 33

[35] Hang Gao, Ruilong Li, Shubham Tulsiani, Bryan Russell, and Angjoo Kanazawa.
Monocular dynamic view synthesis: A reality check. In NeurIPS, 2022. 22

[36] Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien
Valentin. Fastnerf: High-fidelity neural rendering at 200fps. pages 14346–14355,
2021. 7, 43, 56

[37] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In CVPR, 2012. 37

[38] Haoyu Guo, Sida Peng, Haotong Lin, Qianqian Wang, Guofeng Zhang, Hujun Bao,
and Xiaowei Zhou. Neural 3d scene reconstruction with the manhattan-world as-
sumption. In CVPR, 2022. 62

[39] Yuan-Chen Guo, Yan-Pei Cao, ChenWang, YuHe, Ying Shan, Xiaohu Qie, and Song-
Hai Zhang. Vmesh: Hybrid volume-mesh representation for efficient view synthesis,
2023. 56, 58

[40] Zekun Hao, Arun Mallya, Serge Belongie, and Ming-Yu Liu. GANcraft: Unsuper-
vised 3D Neural Rendering of Minecraft Worlds. In ICCV, 2021. 28

[41] Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall, Jonathan T. Barron, and Paul
Debevec. Baking neural radiance fields for real-time view synthesis. ICCV, 2021. 7,
43, 56

[42] Dongting Hu, Zhenkai Zhang, Tingbo Hou, Tongliang Liu, Huan Fu, and Ming-
ming Gong. Multiscale representation for real-time anti-aliasing neural rendering.
arxiv:2304.10075, 2023. 44, 49

66

[43] Brian K. S. Isaac-Medina, Chris G. Willcocks, and Toby P. Breckon. Exact-NeRF:
An exploration of a precise volumetric parameterization for neural radiance fields.
CVPR, 2023. 44, 50, 51

[44] Yoonwoo Jeong, Seokjun Ahn, Christopher Choy, Animashree Anandkumar, Minsu
Cho, and Jaesik Park. Self-calibrating neural radiance fields. In ICCV, 2021. 21

[45] Zhang Jiakai, Liu Xinhang, Ye Xinyi, Zhao Fuqiang, Zhang Yanshun, Wu Minye,
Zhang Yingliang, Xu Lan, and Yu Jingyi. Editable free-viewpoint video using a lay-
ered neural representation. In ACM SIGGRAPH, 2021. 25

[46] Yuhe Jin, Dmytro Mishkin, Anastasiia Mishchuk, Jiri Matas, Pascal Fua, KwangMoo
Yi, andEduardTrulls. Imagematching acrosswide baselines: Frompaper to practice.
International Journal of Computer Vision, 129(2):517–547, 2021. 7, 9

[47] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d
gaussian splatting for real-time radiance field rendering. ACMTransactions on Graph-
ics, 42(4), July 2023. 56, 60

[48] Justin Kerr, ChungMinKim, KenGoldberg, AngjooKanazawa, andMatthewTancik.
Lerf: Language embedded radiance fields. 2023. 54

[49] DP Kingma, J Ba, Y Bengio, and Y LeCun. Adam: A method for stochastic optimiza-
tion. In 3rd International Conference on Learning Representations, 2015. 14, 34, 48

[50] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples:
Benchmarking large-scale scene reconstruction. ACM Transactions on Graphics, 36(4),
2017. 4, 7

[51] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann. Decomposing nerf for
editing via feature field distillation. In Advances in Neural Information Processing Sys-
tems, volume 35, 2022. 26, 28, 54

[52] Abhijit Kundu, Kyle Genova, Xiaoqi Yin, Alireza Fathi, Caroline Pantofaru, Leonidas
Guibas, Andrea Tagliasacchi, Frank Dellaert, and Thomas Funkhouser. Panoptic
Neural Fields: A Semantic Object-Aware Neural Scene Representation. In CVPR,
2022. 24, 25, 37

[53] Andreas Kurz, Thomas Neff, Zhaoyang Lv, Michael Zollhöfer, and Markus Stein-
berger. Adanerf: Adaptive sampling for real-time rendering of neural radiance fields.
2022. 56

[54] Sicheng Li, Hao Li, Yue Wang, Yiyi Liao, and Lu Yu. Steernerf: Accelerating nerf
rendering via smooth viewpoint trajectory. In CVPR, 2023. 56

[55] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon Green, Christoph Lassner,
Changil Kim, Tanner Schmidt, Steven Lovegrove, Michael Goesele, and Zhaoyang
Lv. Neural 3d video synthesis. In CVPR, 2022. 25

[56] Zhengqi Li, SimonNiklaus, Noah Snavely, andOliverWang. Neural scene flowfields
for space-time view synthesis of dynamic scenes. In CVPR, 2021. 25, 27, 30, 32, 33

[57] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey. Barf: Bundle-
adjusting neural radiance fields. In ICCV, 2021. 21

67

[58] Liqiang Lin, Yilin Liu, Yue Hu, Xingguang Yan, Ke Xie, and Hui Huang. Capturing,
reconstructing, and simulating: the urbanscene3d dataset. In ECCV, 2022. 7, 14

[59] Philipp Lindenberger, Paul-Edouard Sarlin, Viktor Larsson, and Marc Pollefeys.
Pixel-Perfect Structure-from-Motion with Featuremetric Refinement. In ICCV, 2021.
14

[60] Lingjie Liu, JiataoGu, KyawZawLin, Tat-SengChua, andChristian Theobalt. Neural
sparse voxel fields. NIPS, 2020. 43

[61] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron,
Alexey Dosovitskiy, and Daniel Duckworth. NeRF in the Wild: Neural Radiance
Fields for Unconstrained Photo Collections. In CVPR, 2021. 7, 9, 10, 14, 25, 50

[62] QuanMeng, Anpei Chen, Haimin Luo, MinyeWu, Hao Su, Lan Xu, Xuming He, and
Jingyi Yu. GNeRF: GAN-based Neural Radiance Field without Posed Camera. In
ICCV, 2021. 21

[63] BenMildenhall, Pratul P. Srinivasan, RodrigoOrtiz-Cayon,NimaKhademiKalantari,
Ravi Ramamoorthi, Ren Ng, and Abhishek Kar. Local light field fusion: Practical
view synthesis with prescriptive sampling guidelines. ACM Transactions on Graphics
(TOG), 2019. 7

[64] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. NeRF: Representing scenes as neural radiance fields for
view synthesis. In ECCV, 2020. I, 7, 10, 14, 22, 26, 31, 37, 44

[65] Norman Müller, Yawar Siddiqui, Lorenzo Porzi, Samuel Rota Bulo, Peter
Kontschieder, andMatthias Nießner. Diffrf: Rendering-guided 3d radiance field dif-
fusion. In CVPR, 2023. 62

[66] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neu-
ral graphics primitives with a multiresolution hash encoding. ACM Trans. Graph.,
41(4):102:1–102:15, July 2022. 26, 27, 43, 45, 48, 49, 51, 53, 56, 57, 60

[67] Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas Kurz, Joerg H. Mueller,
Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, andMarkus Steinberger. DON-
eRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth
Oracle Networks. Computer Graphics Forum, 40(4), 2021. 8, 56

[68] Michael Niemeyer, Jonathan T. Barron, BenMildenhall, Mehdi S. M. Sajjadi, Andreas
Geiger, and Noha Radwan. Regnerf: Regularizing neural radiance fields for view
synthesis from sparse inputs. In CVPR, 2022. 62

[69] Michael Niemeyer and Andreas Geiger. Giraffe: Representing scenes as composi-
tional generative neural feature fields. In CVPR, 2021. 25

[70] JulianOst, FahimMannan, Nils Thuerey, JulianKnodt, and FelixHeide. Neural scene
graphs for dynamic scenes. In CVPR, pages 2856–2865, June 2021. 24, 25, 36, 37, 62

[71] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien Bouaziz, Dan B Goldman,
Steven M. Seitz, and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance
fields. ICCV, 2021. 21, 22, 25

68

[72] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T. Barron, Sofien Bouaziz,
Dan B Goldman, Ricardo Martin-Brualla, and Steven M. Seitz. Hypernerf: A higher-
dimensional representation for topologically varying neural radiance fields. ACM
Trans. Graph., 40(6), dec 2021. 25

[73] M. Piala and R. Clark. Terminerf: Ray termination prediction for efficient neural
rendering. In 2021 International Conference on 3D Vision (3DV), pages 1106–1114, Los
Alamitos, CA, USA, dec 2021. IEEE Computer Society. 56

[74] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer.
D-NeRF: Neural Radiance Fields for Dynamic Scenes. In CVPR, 2020. 25

[75] Ravi Ramamoorthi. Nerfs: The search for the best 3d representation, 2023. I
[76] D. Rebain, W. Jiang, S. Yazdani, K. Li, K. Yi, and A. Tagliasacchi. Derf: Decomposed

radiance fields. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 14148–14156, Los Alamitos, CA, USA, jun 2021. IEEE Computer
Society. 6, 7

[77] D. Rebain, W. Jiang, S. Yazdani, K. Li, K. Yi, and A. Tagliasacchi. DeRF: Decomposed
radiance fields. In CVPR, 2021. 41, 43

[78] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. Kilonerf: Speeding
up neural radiance fields with thousands of tinymlps. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 14335–14345, 2021. 6, 8, 41, 43

[79] Christian Reiser, Richard Szeliski, Dor Verbin, Pratul P. Srinivasan, Ben Mildenhall,
Andreas Geiger, Jonathan T. Barron, and Peter Hedman. Merf: Memory-efficient
radiance fields for real-time view synthesis in unbounded scenes. SIGGRAPH, 2023.
56, 58

[80] Konstantinos Rematas, AndrewLiu, Pratul P. Srinivasan, Jonathan T. Barron, Andrea
Tagliasacchi, Tom Funkhouser, and Vittorio Ferrari. Urban radiance fields. 2022. 9,
26, 27, 28, 32

[81] Gernot Riegler and Vladlen Koltun. Stable view synthesis. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2021. 14

[82] Barbara Roessle, Jonathan T. Barron, Ben Mildenhall, Pratul P. Srinivasan, and
Matthias Nießner. Dense depth priors for neural radiance fields from sparse input
views. In CVPR, June 2022. 26

[83] Barbara Roessle, Norman Müller, Lorenzo Porzi, Samuel Rota Bulò, Peter
Kontschieder, and Matthias Nießner. Ganerf: Leveraging discriminators to optimize
neural radiance fields, 2023. 62

[84] Darius Rückert, Linus Franke, and Marc Stamminger. Adop: Approximate differ-
entiable one-pixel point rendering. ACM Trans. Graph., 41(4):99:1–14, jul 2022. 49,
51

[85] Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht,
and Angjoo Kanazawa. Plenoxels: Radiance fields without neural networks. In
CVPR, 2022. 16

69

[86] Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht,
and Angjoo Kanazawa. Plenoxels: Radiance fields without neural networks. In
CVPR, 2022. 26, 43, 45, 49, 51

[87] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm.
Pixelwise view selection for unstructured multi-view stereo. In European Conference
on Computer Vision (ECCV), 2016. 14

[88] Prafull Sharma, Ayush Tewari, Yilun Du, Sergey Zakharov, Rares Andrei Ambrus,
Adrien Gaidon, William T. Freeman, Fredo Durand, Joshua B. Tenenbaum, and Vin-
cent Sitzmann. Neural groundplans: Persistent neural scene representations from a
single image, 2023. 25, 36

[89] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representation
networks: Continuous 3d-structure-aware neural scene representations. In Advances
in Neural Information Processing Systems, 2019. 37

[90] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization:
Super-fast convergence for radiance fields reconstruction. In CVPR, 2022. 26, 43,
45

[91] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall,
Pratul P. Srinivasan, Jonathan T. Barron, and Henrik Kretzschmar. Block-nerf: Scal-
able large scene neural view synthesis. In CVPR, pages 8248–8258, June 2022. 9, 25,
30, 41, 43, 47

[92] Matthew Tancik, BenMildenhall, TerranceWang, Divi Schmidt, Pratul P. Srinivasan,
Jonathan T. Barron, and Ren Ng. Learned initializations for optimizing coordinate-
based neural representations. In CVPR, 2021. 9

[93] Matthew Tancik, EthanWeber, EvonneNg, Ruilong Li, Brent Yi, Justin Kerr, Terrance
Wang, Alexander Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David
McAllister, and Angjoo Kanazawa. Nerfstudio: A modular framework for neural
radiance field development. In ACM SIGGRAPH 2023 Conference Proceedings, SIG-
GRAPH ’23, 2023. 48

[94] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow
(extended abstract). In IJCAI, 2021. 34, 35

[95] Seth J. Teller and Carlo H. Séquin. Visibility preprocessing for interactive walk-
throughs. In Proceedings of the 18th Annual Conference on Computer Graphics and Inter-
active Techniques, SIGGRAPH ’91, page 61–70, New York, NY, USA, 1991. Association
for Computing Machinery. 9

[96] Ayush Tewari, Tianwei Yin, George Cazenavette, Semon Rezchikov, Joshua B. Tenen-
baum, Frédo Durand, William T. Freeman, and Vincent Sitzmann. Diffusion with
forward models: Solving stochastic inverse problems without direct supervision. In
arXiv, 2023. 62

[97] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer, Christoph
Lassner, and Christian Theobalt. Non-rigid neural radiance fields: Reconstruction
and novel view synthesis of a dynamic scene from monocular video. In ICCV, 2021.
21, 25

70

[98] Alex Trevithick and Bo Yang. Grf: Learning a general radiance field for 3d repre-
sentation and rendering. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 15182–15192, 2021. 9

[99] VadimTschernezki, Iro Laina, Diane Larlus, andAndrea Vedaldi. Neural Feature Fu-
sion Fields: 3D distillation of self-supervised 2D image representation. In Proceedings
of the International Conference on 3D Vision (3DV), 2022. 26, 28, 54

[100] Haithem Turki, Deva Ramanan, and Mahadev Satyanarayanan. Mega-nerf: Scal-
able construction of large-scale nerfs for virtual fly-throughs. In CVPR, pages 12922–
12931, June 2022. 27, 30, 41, 47

[101] Haithem Turki, Jason Y Zhang, Francesco Ferroni, and Deva Ramanan. SUDS: Scal-
able urban dynamic scenes. In CVPR, 2023. 47, 54

[102] Suhani Vora*, Noha Radwan*, Klaus Greff, Henning Meyer, Kyle Genova, Mehdi
S. M. Sajjadi, Etienne Pot, Andrea Tagliasacchi, and Daniel Duckworth. Nesf: Neu-
ral semantic fields for generalizable semantic segmentation of 3d scenes. Transactions
onMachine Learning Research, 2022. https://openreview.net/forum?id=ggPhsYCsm9.
26

[103] Junjue Wang, Brandon Amos, Anupam Das, Padmanabhan Pillai, Norman Sadeh,
andMahadev Satyanarayanan. A scalable andprivacy-aware iot service for live video
analytics. In Proceedings of the 8th ACM on Multimedia Systems Conference, MMSys’17,
page 38–49, New York, NY, USA, 2017. Association for Computing Machinery. 21, 54

[104] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping
Wang. Neus: Learning neural implicit surfaces by volume rendering for multi-view
reconstruction. NeurIPS, 2021. 55, 57

[105] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srinivasan, Howard Zhou,
Jonathan T. Barron, RicardoMartin-Brualla, Noah Snavely, and Thomas Funkhouser.
Ibrnet: Learning multi-view image-based rendering. In CVPR, 2021. 9

[106] ZhouWang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004. 16, 34, 49

[107] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Victor Adrian Prisacariu.
NeRF−−: Neural radiance fields without known camera parameters. arXiv preprint
arXiv:2102.07064, 2021. 21

[108] William T. Weldon and Joseph Hupy. Investigating methods for integrating un-
manned aerial systems in search and rescue operations. Drones, 4(3), 2020. 4

[109] Lance Williams. Pyramidal parametrics. Computer Graphics, 17:1–11, July 1983. 41
[110] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, Sid-

dhesh Khandelwal, Bowen Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kaese-
model Pontes, Deva Ramanan, Peter Carr, and James Hays. Argoverse 2: Next gen-
eration datasets for self-driving perception and forecasting. In NeurIPS Datasets and
Benchmarks, 2021. 50

71

[111] Tianhao Wu, Fangcheng Zhong, Andrea Tagliasacchi, Forrester Cole, and Cengiz
Oztireli. D2nerf: Self-supervised decoupling of dynamic and static objects from a
monocular video. In Advances in Neural Information Processing Systems, 2022. 25, 27,
28, 33

[112] Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil Kim. Space-time neural
irradiance fields for free-viewpoint video. In CVPR, pages 9421–9431, 2021. 25

[113] Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao, Anyi Rao, Christian
Theobalt, Bo Dai, and Dahua Lin. Bungeenerf: Progressive neural radiance field
for extreme multi-scale scene rendering. In ECCV, 2022. 9, 25, 44, 47

[114] Huang Xin, Zhang Qi, Feng Ying, Li Xiaoyu, Wang Xuan, and Wang Qing. Local
implicit ray function for generalizable radiance field representation. In CVPR, 2023.
44

[115] Linning Xu, Yuanbo Xiangli, Sida Peng, Xingang Pan, Nanxuan Zhao, Christian
Theobalt, Bo Dai, and Dahua Lin. Grid-guided neural radiance fields for large urban
scenes. In CVPR, 2023. 47

[116] Bangbang Yang, Yinda Zhang, Yinghao Xu, Yijin Li, Han Zhou, Hujun Bao, Guofeng
Zhang, and Zhaopeng Cui. Learning object-compositional neural radiance field for
editable scene rendering. In ICCV, October 2021. 25

[117] Gengshan Yang, Minh Vo, Neverova Natalia, Deva Ramanan, Vedaldi Andrea, and
Joo Hanbyul. Banmo: Building animatable 3d neural models from many casual
videos. In CVPR, 2022. 25, 27

[118] Guo-Wei Yang, Wen-Yang Zhou, Hao-Yang Peng, Dun Liang, Tai-Jiang Mu, and Shi-
Min Hu. Recursive-NeRF: An efficient and dynamically growing nerf. arXiv preprint
arXiv:2105.09103, 2021. 10

[119] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume rendering of neural
implicit surfaces. 2021. 55, 57, 58

[120] Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin, Pratul P. Srinivasan, Richard
Szeliski, Jonathan T. Barron, and BenMildenhall. Bakedsdf: Meshing neural sdfs for
real-time view synthesis. arXiv, 2023. 56

[121] A. Yu, V. Ye, M. Tancik, and A. Kanazawa. pixelnerf: Neural radiance fields from one
or few images. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 4576–4585, Los Alamitos, CA, USA, jun 2021. IEEE Computer
Society. 9, 62

[122] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa.
PlenOctrees for real-time rendering of neural radiance fields. In ICCV, 2021. 7, 12,
43, 56

[123] Hong-Xing Yu, Leonidas J. Guibas, and JiajunWu. Unsupervised discovery of object
radiance fields. In International Conference on Learning Representations, 2022. 25

[124] Wentao Yuan, Zhaoyang Lv, Tanner Schmidt, and Steven Lovegrove. Star: Self-
supervised tracking and reconstruction of rigid objects in motion with neural ren-
dering. In CVPR, pages 13144–13152, 2021. 25

72

[125] Kaan Yücer, Alexander Sorkine-Hornung, OliverWang, and Olga Sorkine-Hornung.
Efficient 3D object segmentation from densely sampled light fields with applications
to 3D reconstruction. ACM Transactions on Graphics, 35(3), 2016. 7

[126] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. Nerf++: Analyzing
and improving neural radiance fields. arXiv:2010.07492, 2020. 7, 9, 11, 14, 25, 27, 42

[127] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The
unreasonable effectiveness of deep features as a perceptual metric. In CVPR, 2018.
16, 34, 49

[128] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and Andrew Davison. In-place
scene labelling and understandingwith implicit scene representation. In ICCV, 2021.
25, 54

[129] Zhizhuo Zhou and Shubham Tulsiani. Sparsefusion: Distilling view-conditioned
diffusion for 3d reconstruction. In CVPR, 2023. 62

73

